
École Doctorale Informatique, Télécommunications et Électronique

Institut des Systèmes Intelligents et de Robotique

Integrating Motion Planning into
Reinforcement Learning to solve hard

exploration problems

Thèse de Doctorat

présentée par : Guillaume Matheron

soutenue le : 18 novembre 2020
discipline : Intelligence Artificielle

Thèse dirigée par M. Olivier Sigaud, Professeur, ISIR

et co-dirigée par M. Nicolas Perrin, Chargé de recherche, ISIR

Jury :

M. Olivier Buffet, Rapporteur
M. Emmanuel Rachelson, Rapporteur
M. Jean-Paul Laumond, Examinateur
Mme Véronique Perdereau, Examinatrice
M. Nicolas Perrin, Encadrant
M. Olivier Sigaud, Directeur de thèse

Institut des Systèmes Intelligents et de Robotique
Pyramide - T55/65, 4 Place Jussieu, 75005 Paris - tél. 01 44 27 51 41
http://www.isir.upmc.fr/

Contact : guillaume_thesis@matheron.eu

http://www.isir.upmc.fr/
guillaume_thesis@matheron.eu

Abstract

The past decade has featured an explosion in the use of reinforcement learning
for continuous control tasks. In this context, many issues are solved a few
years after they arise, but two main hurdles stand out from the pack. The
first hurdle is the difficulty of general robotics problems. Many recent works
demonstrate impressive results in simulated environments, but very few feature
some important characteristics of real-world problems: continuous control
and long sequences of tasks to accomplish. Reinforcement learning algorithms
on continuous state problems with continuous actions are a recent addition to
the tool-belt that is reinforcement learning, and these algorithms tend to need
extensive hyperparameter tuning to reliably converge. The second hurdle
is actually reaching the target. As most continuous optimization process,
reinforcement learning relies directly or indirectly on gradients to improve
policies and incrementally solve the problem at hand. However, this requires
a starting strategy that yields a useful gradient, which is seldom the case
for complex tasks in mobile robots. Many strategies have been implemented
to circumvent this issue, but we believe that the next breakthrough lies in
the field of robotics, and more specifically motion planning, which has been
dealing with large state-spaces with sparse rewards for decades.

Motion planning is able to solve robotics problems much quicker than any
reinforcement learning algorithm by efficiently searching for a viable trajectory.
Indeed, while the main object of interest in the field of Reinforcement Learning
is the behavior of an agent, Motion Planning is concerned with the geometry
and properties of the state-space, and uses a different set of primitives to
achieve more efficient exploration. Some of these primitives require a model
of the system and are not studied in this work, others such as reset-anywhere
are only available in simulated environments.

3

On the other hand, Motion Planning approaches do not benefit from
the same generalization properties as the policies produced by reinforcement
learning.

In this thesis, we study the ways in which techniques inspired from
motion planning can speed up the solving of hard exploration problems
for reinforcement learning without sacrificing the advantages of model-free
learning and generalization. We identify a deadlock that can occur when
applying reinforcement learning to seemingly-trivial sparse-reward problems,
and contribute an exploration algorithm inspired by motion planning but
specifically designed for reinforcement learning environments, as well as a
framework to use the collected data to train a reinforcement learning algorithm
in previously-intractable scenarios.

4

Acknowledgments

I would first like to thank the École Normale Supérieure de Paris, Sor-
bonne Université, the École Doctorale Informatique, Télécommunications et
Électronique and the Institut des Systèmes Intelligents et de Robotique for
the classes and lectures that I have benefited from during these three years of
PhD thesis, and their support.

I am grateful to the professors of ENS Ulm, and especially Jean-Paul
Laumond who gave me the extra boost in interest towards robotics and motion
planning, that led me to a fantastic internship and ultimately to performing a
PhD in this domain.

I would like to thank all my colleagues at NASA/JPL during my internship
and in particular Olivier Toupet, who was an inspiration and gave me the
confidence to dare mighty things.

I want to thank all the great professors and speakers that I was lucky to
meet on my way, who communicated their passion for computer science and
robotics, as well as Christian Lorenzi for encouraging me with managing the
fab lab of ENS.

I want to warmly thank my family and step-family who supported me
during these years, and my wife Marguerite Matheron for her support and
proofreading of this manuscript.

My deepest gratitude goes to my mentors Olivier Sigaud and Nicolas
Perrin, who stimulated my curiosity and my interest through passionate
discussions about Reinforcement Learning techniques, definitions and much

5

wider topics. These discussions were an essential part of my journey, but
as important was the advice given about deadlines, strategy, writing articles
and conferences. Striking a balance between exploration and exploitation is a
hard but integral part of my research subject, and striking a balance between
exploring, experimenting and writing has been a hard but integral part of this
PhD.

I want to thank all the researchers who gave me their opinion and reviews,
especially my reviewers Emmanuel Rachelson and Olivier Buffet, as well as
Stéphane Doncieux.

This work was partially supported by the French National Research Agency
(ANR), Project ANR-18-CE33-0005 HUSKI

6

Contents

List of Figures 11

Introduction 14
Motivation . 14
Methodology . 16
Summary of contributions . 17

1 Background 19
1.1 Background on Motion Planning 19

1.1.1 Configurations, constraints and holonomy 20
1.1.2 Implications of non-holonomic constraints 22
1.1.3 Common assumptions in Motion Planning 23

1.2 Background on Reinforcement Learning 23
1.2.1 Markov Decision Processes 23
1.2.2 Matching Reinforcement Learning and Motion Planning

concepts . 24
1.2.3 Policies and agents . 25
1.2.4 Q-Learning . 26
1.2.5 Deep Deterministic Policy Gradient 27

1.3 Reset-anywhere . 30

2 Related work 31
2.1 Taxonomy of Reinforcement Learning algorithms 32
2.2 Exploration mechanisms for behavioral learning 35
2.3 Attempts to use Motion Planning techniques with Reinforce-

ment Learning . 36

7

3 Using motion planning in a reinforcement learning environ-
ment 38
3.1 Adapting Rapidly-exploring Random Tree to RL Algorithms . 39

3.1.1 Rapidly-exploring Random Tree 39
3.1.2 RRT in RL environments 42
3.1.3 Limitations of RRT due to sampling 44

3.2 Expansive Spaces Tree . 45
3.3 Ex . 46

3.3.1 Pitfalls of density as a measure for novelty 46
3.3.2 The Ex algorithm . 48
3.3.3 Related work . 50

3.4 Experiments using a feature space 52
3.4.1 The curse of dimensionality 52
3.4.2 Feature spaces . 53
3.4.3 Benchmark on Ant-Maze 53

3.5 Conclusion . 54

4 Exploiting exploration data in Reinforcement Learning through
the experience replay buffer 56
4.1 Experimental setup . 57
4.2 Behavior of DDPG, RRT-NH and Ex on mazes 57
4.3 Motivation . 59
4.4 Methods . 60
4.5 Results . 60
4.6 Analysis . 62
4.7 Thin walls and the limits of “sets of transitions” 63
4.8 Conclusion . 64

5 Exploiting exploration data as a training curriculum: back-
tracking 66
5.1 Introduction . 66
5.2 Related work . 67
5.3 Backtracking algorithm . 68
5.4 Experimental Setup . 69
5.5 Choice of discount factor γ . 70
5.6 Results on 2D mazes and analysis 71

6 The problem of deterministic policy gradients in determinis-
tic environments with sparse rewards 74
6.1 Related work . 75
6.2 A new failure mode . 76

8

6.2.1 The 1D-Toy environment 76
6.2.2 Residual failure to converge using different noise processes. 76

6.3 Correlation between finding the reward early and finding the
optimal policy. 78
6.3.1 Spontaneous actor drift 79
6.3.2 Explaining the deadlock situation for DDPG on 1D-Toy 80
6.3.3 Formal proof of the existence of a deadlock in 1D-Toy . 82

6.4 Generalization to all deterministic Policy Gradient algorithms
in deterministic environments with sparse rewards 83
6.4.1 Proof of convergence of the critic to Qπ 84
6.4.2 Proof that Qπ is piecewise-constant 85
6.4.3 Consequences of the convergence cycle 88

6.5 Impact of function approximation 89
6.6 Potential solutions . 90

6.6.1 Avoiding sparse rewards 90
6.6.2 Replacing the policy-based critic update 90
6.6.3 Replacing the deterministic policy gradient update . . 93

6.7 Experiments on larger benchmarks 93
6.8 Conclusion . 95

7 Going one step further: backtracking with skill chaining 96
7.1 Related work . 97
7.2 Methods . 98

7.2.1 Skill chaining algorithm 98
7.2.2 Adapted backplay algorithm 99
7.2.3 Reward shaping . 101
7.2.4 Need for Resetting to Unseen States 103

7.3 Results on 2D mazes . 105
7.4 Analysis of results . 105
7.5 Influence of hyperparameters 108
7.6 Conclusion . 109

Conclusion 111

Bibliography 115

Acronyms 128

Glossary 130

9

A Appendix: tooling and other contributions 133
A.1 Reinforcement Learning toolchain 133
A.2 Gazebo simulator . 134
A.3 RRT pitfalls . 134
A.4 Analysis of 1D-Toy . 134

A.4.1 Probability of success for an unbiased random walk
with sink . 135

A.4.2 Probability of success for unbiased p-greedy random
walk with sink . 137

A.4.3 Sanity check . 138

10

List of Figures

1 Relations between the problems we faced and our contributions 18

1.1 Klann linkage [Klann, 2005] in four different positions. 20

2.1 Properties of Reinforcement Learning (RL) algorithms 32
2.2 Equations of RL algorithms 33

3.1 Behavior of Rapidly-exploring Random Tree (RRT). For each
iteration, first srand is chosen randomly, then its nearest neigh-
bor in the exploration tree snear is found, and finally an action
a is chosen either using a heuristic (in the case of RRT), or
randomly (in the case of Rapidly-exploring Random Tree Non-
Holonomic (RRT-NH)). The resulting state s′ is added to the
tree. 40

3.2 Test of RRT when the reachable space is different from the
sampling space . 43

3.3 Test of RRT-NH when the reachable space is different from
the sampling space . 43

3.4 Test of Ex when the reachable space is different from the
sampling space . 44

3.5 Behavior of EST . 45
3.6 Paradox occurring when using a disc kernel to measure the

density of an area . 47
3.7 Operation of RRT, EST and Ex 48
3.8 AntMaze environment . 54
3.9 Performance of Ex and RRT-NH on the AntMaze environment 55

11

4.1 Actor and critic of DDPG in a maze with thin walls 58
4.2 Exploration pattern of RRT-NH and Ex in a maze 58
4.3 Exploration pattern of RRT-NH and Ex in a maze when con-

tinuing beyond the first reward found 59
4.4 Actor and critic of offline DDPG preloaded with exploration

data in a maze with thin walls 61
4.5 Actor and critic of DDPG preloaded with exploration data in

a 2x2 maze with thin walls . 61
4.6 Actor and critic of DDPG in a 3x3 maze with thin walls . . . 62
4.7 Mini-batch created from exploration data on a 2D maze 63

5.1 Variants of the Plan, Backplay algorithm. 69
5.2 Success rate of DDPG and PB, depending on γ 72
5.3 Success rate of PB on 2D mazes, when compared to DDPG.

Error bars are computed using Wilson error intervals. From
left to right, N = 183, 169, 185, 168, 101, 101. 72

5.4 Example run of vanilla DDPG on a 2x2 maze for 100k steps.
The sparse reward, which was placed in the top-left hand
corner, was not found. 73

6.1 Presentation of the 1D-toy environment 76
6.2 Performance of DDPG on 1D-toy 77
6.3 Detection of rewards in mini-batches during training 78
6.4 Spontaneous drift of the actor and critic in DDPG 79
6.5 Visualization of the DDPG critic in a deadlock 80
6.6 Deadlock cycle in 1D-toy . 81
6.7 Generalized deadlock cycle . 83
6.8 Illustration of the proof that Qπ has flat gradient 86
6.9 Local extrema and function approximation 89
6.10 Performance of DDPG-argmax and SAC on 1D-toy 91
6.11 Performance of DDPG and DDPG-argmax on a sparse HalfCheetah-

v2 . 94

7.1 Performance of DDPG and PB on 2x2 mazes with and without
reward shaping . 101

7.2 Problematic behavior when combining backtracking and skill
chaining . 104

7.3 Results of DDPG, TD3, PBCS, PB on maze environments . . 106
7.4 Enlarged view of the results of PBCS on mazes environments . 107

A.1 PDF of state after n steps of the unbiased random walk with
sink . 137

12

A.2 Cumulative success rate after n steps of the unbiased random
walk with sink . 137

A.3 Cumulative success rate after n steps of the p-greedy unbiased
random walk with sink . 139

A.4 PDF of state after 21 steps of unbiased random walk with sink 140
A.5 Cumulative success rate after n steps of the 0.1-greedy unbiased

random walk with sink . 140

13

Introduction

Artificial Intelligence is widely regarded as the next frontier, feeding some
form of self-reinforcing human fantasy that machine thinking will reach a
point when it can learn and improve itself exponentially until it reaches a
singularity beyond which it completely escapes human comprehension. In
this regard, Artificial Intelligence has been described as “The last invention
that humanity will ever need to make” [Bostrom, 2015].

Advances with neural networks in the past decade have fueled this idea that
humans are already unable to understand the reasoning behind decisions made
by computers, and that super-intelligence is only one step away. However, as
with flying cars and moon bases, the horizon of super-intelligent machines
seems as elusive as an actual horizon, always further as we advance.

Motivation

We dream of a strong artificial intelligence that is able to drive the behavior
of robots, but by testing leading edge artificial intelligence algorithms on
extremely simple problems we show that fundamental problems are still
holding back these approaches. In this PhD thesis, we scratch the surface
of one of the many roadblocks that lie ahead, specifically in the domain of
learning motion tasks for virtual robots.

Suppose your just bought a small mobile robot like Nao, and you want to
teach it to go to the coffee machine, make a cup of hot coffee, and bring it
back to you. You don’t know where the coffee machine is, you don’t know
the torque profile of the actuators of Nao, and you don’t know the field of
view of its cameras.

14

The promise of Reinforcement Learning (RL) is that by rewarding good
behavior and punishing bad behavior, a computer program can progressively
learn how to maximize the reward it receives. This directly parallels how
animals and humans learn to behave and move: toddlers are hurt when falling
over, and are congratulated by their parents when making their first steps.
Can we transpose this to robots?

The answer is yes, and many works in the past decade [Lillicrap et al.,
2015; Mnih et al., 2013; Schulman et al., 2015; Fujimoto et al., 2018b] have
proposed algorithms and methods for training smart controllers that are able
to drive the actions of a virtual or physical robot, or similar problems such as
controlling a character in computer games. However, these methods usually
fall short in tasks where progress towards the goal is difficult to evaluate
[Achiam et al., 2019]. Collectively, these problems are known as exploration
problems, contrasting with optimization problems in which the policy can
be incrementally improved with useful feedback from the environment or an
external trainer.

In the context of RL where the goal is expressed as a reward function,
these hard exploration problems are said to have sparse rewards in contrast
with dense rewards that guide the learning process towards the final goal.
Some RL problems have deceptive rewards, which are dense rewards that
feature several local maxima, however these can usually be converted to sparse
reward problems by applying a threshold to the reward signal. Some other
problems have rewards that are hard to define because the user only has an
implicit understanding of the task objective. These are not covered in this
work, but are studied in the work of Leike et al. [2018].

This inability of RL algorithms to solve exploration problems is especially
frustrating because exploration can seem to be added to RL algorithms as an
afterthought that theoretically guarantees convergence with no consideration
given to the actual performance of training in exploration problems. Other
classes of algorithms such as Motion Planning (MP) are often able to solve
these problems orders of magnitude faster, and are still predominant in the
domain of real-world robotics. However, these approaches often need an
expert-designed model of the robot and the environment, and output a single
open-loop trajectory instead of a motion controller. Therefore closing the
control loop is a major challenge, to which RL algorithms seem suited because
of their generalization properties.

Research question. In this PhD thesis, we attempt to bridge the gap
between these two worlds, the ultimate goal being achieving the exploration
capabilities of MP while training efficient controllers, all this with minimal

15

expert input and modeling. Therefore our main research question is how
to integrate components of MP in RL algorithms in order to improve the
automated exploration of large deterministic environments with sparse rewards.

Methodology

All of the experiments in this work are performed on either virtual robots which
are designed and simulated to emulate the behavior of their real-world physical
counterparts, or simulated environments that have been crafted to compare
a specific property of several algorithms. Lower-dimension environments
such as cliff walk [Sutton and Barto, 2018b] are often used to demonstrate
fundamental properties of RL algorithms, and testing in these environments
occasionally reveals fundamental flaws [Matheron et al., 2019].

Another class of simulated environments we use are 2D mazes, because
they are hard exploration problems and reward shaping behaves very poorly
in such environments, creating many local optima. Our results in Section 7.3
show that state-of-the-art algorithms such as DDPG [Lillicrap et al., 2015] and
Twin Delayed DDPG (TD3) [Fujimoto et al., 2018b] fail to solve even very
simple mazes, validating the pertinence of these environments as a benchmark
for exploration.

In some parts of this thesis, we use the reset-anywhere primitive which is
only available in a simulated environment, therefore, some of these methods
are not directly applicable to physical robots. However, training RL agents on
these virtual robots can be used as a demonstration tool, as visualization, for
entertainment or in order to transfer the learned policies to physical robots,
for direct use or further training.

In this thesis, we have identified several issues facing the field of RL, some
of which are well-known and others are contributed. Some are inherent to the
problem statement, and others are introduced or worsened by solutions we
brought to solve other problems. In order to clarify the effect of each of the
methods presented in this document, the main arguments of this PhD thesis
are summarized in Fig. 1. In the body of the text, this formatting indicates
that the paragraph directly references Fig. 1:

A B

Problem A is solved by B.

16

B C

Method B causes or worsens problem C.

Therefore, in Fig. 1, problems that have no incoming edge are inherent to
the field of RL.

Summary of contributions

All research is based on existing work, and builds on the shoulders of giants.
However, we introduce some elements that are, to the best of our knowledge,
original or published by ourselves during the course of this thesis.

• In Section 3.3, we contribute a novel exploration algorithm called Ex,
which is based on MP concepts but is well-suited to the exploration
of RL environments, and outperforms other MP algorithms on these
environments [Matheron et al., 2020].

• In Section 4.7, we demonstrate that using mini-batches of transitions
from an exploration tree to pre-seed a RL replay buffer is futile in 2D
mazes with thin walls, and therefore that no RL algorithm in continuous
state-spaces can truly be off-policy [Matheron et al., 2019].

• In Section 5.3, we propose a variant of the Backplay algorithm [Resnick
et al., 2018] in which the backtracking process is controlled by the actual
performance of the underlying RL algorithm. We then combine this
backtracking algorithm with Ex using the framework of Go-Explore
[Ecoffet et al., 2019] to produce an algorithm called Plan, Backplay
(PB) [Matheron et al., 2020].

• In Chapter 6, we demonstrate that Deep Deterministic Policy Gradient
(DDPG) can fail in even trivial environments with unlimited time,
and prove that this deadlock is possible for any Policy Gradient (PG)
algorithm in a deterministic environment with sparse rewards [Matheron
et al., 2019].

• In Chapter 7, we contribute a novel algorithm called Plan, Backplay,
Chain Skills (PBCS) which builds on PB and efficiently solves 2D maze
environments [Matheron et al., 2020].

17

Exploration is
hard for RL
algorithms

Motion planning

Chapter 3

Motion plan-
ning data is
hard to use

Chapter 4

Backplay

Chapter 5

Sparse re-
wards cause

failures of RL

Chapter 6

RL is unstable
in long sessions

Skill chaining

Need to
train towards

arbitrary targets

Chapter 7

Reward shaping

Section 7.2.3

Deceptive
gradients

Section 7.2.3

A B Problem A is solved by B

C D Solution C causes problem D

Legend

Figure 1: Relations between the problems we faced and our contributions

18

1
Background

This PhD thesis builds on sixty years of research in Machine Learning (ML)
[Samuel, 1959], and thirty years in Motion Planning (MP) [Latombe, 1991].
This chapter presents prerequisites that should be sufficient for any researcher
in Computer Science to understand the following chapters, but are common
knowledge to scientists working in Reinforcement Learning (RL).

Section 1.1 defines basic robotics concepts such as configuration spaces,
implicit parameterizations, reachability and holonomy. Section 1.2 defines
the concepts of Markov Decision Process (MDP) and how it relates to MP,
and presents Q-Learning and Deep Deterministic Policy Gradient (DDPG),
two algorithms on which we rely in the following chapters. Section 1.3 studies
reset anywhere, an additional primitive which is usually available in simulated
environments such as Go [Silver et al., 2016], but is not as commonly used in
RL continuous control frameworks.

1.1 Background on Motion Planning

Motion Planning is usually studied in the context of real robots, in which an
embedded planning component sends commands to motion controllers that
drive actuators interacting with the physical world. Periodically, the state of
the robot is estimated through the output of sensors which can be of many
types (cameras, switches, angle sensors, . . .).

A discrete-time approximation of this behavior is often used, especially
when working in a simulated environment in which the state of the robot is
computed as a sequence of values.

The following sections define useful concepts in the study of robotics, and
are largely inspired by the work of Lynch and Park [2017].

19

Figure 1.1: Klann linkage [Klann, 2005] in four different positions.

1.1.1 Configurations, constraints and holonomy

Robots are commonly described as a graph of rigid links, chained together
with actuated or unactuated joints that constrain the motion of the robot.
Additional constraints may be applied by obstacles, ground contacts or forces.

Degrees of Freedom (DoF). The configuration of a rigid link can be
defined by a unique coordinate system, which features three degrees of freedom
for position and three degrees of freedom for orientation, for a total of 6 DoF.
Therefore, the configuration of a robot with N links can be described using
6N parameters.

However, each independent constraint on the configuration of the robot
introduces a redundancy in this full configuration. More precisely, each
independent constraint removes one DoF from the robot. Joints can be
of different types. For instance the pivot joint introduces five independent
constraints: three positional constraints and two orientation constraints.
Therefore a robot with N links and J pivot joints has 6N − 5J DoF. Note
that this only holds true if all constraints are independent, which can be hard
to determine.

For instance, a mobile robot with two links joined by one pivot joint
has 6× 2− 5× 1 = 7 DoF. If one of these two links is fixed to the ground
(representing six constraints), then the resulting manipulator arm has only
6 × 2 − 5 × 1 − 6 = 1 DoF. However, applying the same reasoning to the
Klann linkage depicted in Fig. 1.1 would result in a negative number of DoF
because some non-independent constraints are accounted for twice. In this
section when counting constraints we assume they are all independent.

Explicit vs. implicit parameterizations. The configuration of a robot
can be expressed using the union of all 6 configuration parameters of each
link. However, constraints on the configuration can also be used to reduce the
dimension of the configuration space. For instance, the configuration of the
manipulator arm mentioned earlier can be described using only the angle of
the pivot joint. More generally, the configuration of an acyclic mobile robot

20

using only J pivot joints can be parametrized using the 6 parameters of one
of its links, and the angles of each joint, resulting in a configuration space of
dimension 6 + J . Such a robot has J + 1 links and J pivot joints, therefore it
has 6(J + 1)− 5J = J + 1 DoF.

parameterizations that use a minimum number of coordinates are called
explicit parameterizations, while parameterizations that use redundant coordi-
nates are called implicit.

In the case of an implicit parameterization using k parameters and c
independent constraints, the set of admissible configurations can be seen as a
(k − c)-dimensional surface embedded in a k-dimension space of all possible
parameterizations (called the configuration space or C-space).

Constraints on velocity. Constraints on the configuration of the robot
are called holonomic. They are only present when the parameterization is
implicit, and can be differentiated such that one constraint on the configuration
translates into one constraint on the derivative of the configuration.

Holonomic constraints are also called integrable because when they are
specified as a constraint on the derivative of the configuration q̇, they can be
integrated back to a constraint on the robot configuration q.

On the other hand, constraints that are specified in terms of q̇ and that
cannot be integrated to a constraint on q are called non-holonomic. These
constraints do not decrease the dimension of the configuration space but still
restrict the ways in which the robot can move.

Example of the Reeds-Shepp Car. Robots that do not have non-holonomic
constraints are called holonomic, while systems that have at least one non-
holonomic constraint are called non-holonomic.

An example of non-holonomic system is the parallel parking example, also
known as the Reeds-Shepp Car [Reeds and Shepp, 1990]. In this system,
a single link is subject to two positional constraints (stay on the ground),
one angular constraint (stay flat on the ground), and one non-holonomic
constraint (do not slide sideways).

This means that the system has three DoF which can be represented using
an explicit parameterization using the planar coordinates of a point in the
car, and a steering angle. The holonomic constraint does not further reduce
the dimension of the configuration space (all positions and steering angles
are still valid configurations) but it reduces the possible velocities, therefore
some C-space trajectories are infeasible (namely the ones that require the
car to slide sideways). However, these trajectories can be approximated to
any precision by small back-and-forth maneuvers (this property is called

21

small-time local controllability). On the other hand, a similar car that can
only go forward is not small-time local controllable [Dubins, 1957].

1.1.2 Implications of non-holonomic constraints

Holonomy is an important property for our research problem because it
simplifies many MP approaches that are based on geometry. In a holonomic
problems, all C-space trajectories that follow the C-space constraints are
admissible. This has several implications:

• The shape of the set of admissible configurations can be studied inde-
pendently from the velocities. For instance, reachability problems are
equivalent to geometrical connectivity problems.

• All trajectories are independent of speed, and can be specified as tra-
jectories in C-space.

Furthermore, many robotics problems can be specified as explicit parame-
terizations. For instance, humanoid robots are often a tree of links joined by
pivot, and can be described using the 6 parameters of a link, plus the angles
of all joints. A holonomic problem with an explicit parameterization has the
following additional properties (assuming no obstacles):

• The shortest trajectory between two configurations in C-space is a
straight line.

• All configurations are reachable from any other configuration.

This means that proximity in C-space is a good indicator of the similarity of
two states, and the time it takes to reach one from the other. This property
plays a major role in the exploration of state spaces because the C-space
distance between two states can be used as a proxy for novelty (Section 3.2).

Holonomic problems (especially when an explicit parameterization is avail-
able) often have a straightforward geometric solution based on the topology
of their configuration space, while non-holonomic problems have to rely on
sampling approaches or more complex geometric primitives [Sussmann and
Tang, 1991].

Real-world robotics problem are rarely holonomic, because the dynamics of
the robot itself (the inertia of the links) and gravity introduce non-holonomic
constraints.

22

1.1.3 Common assumptions in Motion Planning

MP approaches can be versatile, and depending on the level of available expert
knowledge, different algorithms can be used. For instance, in Chapter 3,
we show how two variants of the Rapidly-exploring Random Tree (RRT)
algorithm can be used depending on the available primitives.

Here are common assumptions that MP can take advantage of:

1. An invertible model of the robot geometry is known, and can be used to
command actuators in order to achieve a target velocity for each link.

2. In the presence of non-holonomic constraints, a heuristic is available
and gives an estimation of the required actuation in order to achieve a
target velocity for each link.

3. We can sample points in a reasonable approximation of the reachable
configuration space.

4. Given two points in C-space, it is possible to determine whether the
patch the two is either free or blocked by an obstacle (this sometimes
takes the form of a local planner)

1.2 Background on Reinforcement Learning

This section presents the usual framework for RL, and how robotics problems
(that are more commonly studied within the framework of MP) can be
integrated in an RL framework.

1.2.1 Markov Decision Processes

The most common mathematical model for RL is a MDP, which can be
defined as a tuple (S,A, Pa, Ra) in which:

• S is the set of possible environment states,

• A is the set of possible actions,

• with s, s′ ∈ S, Pa(s, s
′) is the probability that the next environment

state will be s′, given that its present state is s and the action that is
chosen by the controller is currently a.

Deterministic environments are such that for each state s and action
a, only one next-state s′ is possible, in other words Pa(s, s

′) = 1. In
this case, the transition distribution is commonly written as a function
step(s, a) = s′.

23

• Given that the current state of the environment is s, the next state
of the environment is s′, and the chosen action was a, Ra(s, s

′) is the
reward used as feedback by a learning algorithm on the next time step.
In deterministic environments, the reward function is also deterministic
and the parameter s′ can be omitted. The reward can then be written
as R(s, a).

1.2.2 Matching Reinforcement Learning and Motion
Planning concepts

In this section, we cast a new light on the formulation of MDPs by applying
this framework to MP and more generally robotics. This is useful when
interfacing a simulated robot with a RL algorithm.

• State space S. Robots are commonly described as a tree of rigid links,
chained together with joints. The environment state then includes the
angles of each robot joint, but also their angular velocity. The state
of mobile robots includes the position and orientation of their base, as
well as their velocity and angular velocity. If the environment contains
mobile objects in addition to the robot itself, then these also need to
be included in the environment state. More precisely, the state of a
robot described by a configuration q is (q, q̇). In robotics, S is usually
continuous but in a general MDP, it can be either finite, countable or
continuous.

• Action space A. This can be a low-level hardware parameter such as
motor voltages, but simulation models sometimes omit the controller
and assume that the joints are torque-controlled, and therefore an action
a is a vector of torque values in N ·m−1. In robotics, the most natural
definition of A is usually continuous but in a general MDP, it can be
either finite, countable or continuous. Some approaches are based on
using only a subset of the possible continuous actions, and represent A
as a finite set although the underlying environment could use continuous
actions.

• Transition function. The transition function is usually implemented
as a deterministic function, but can include stochastic noise to account
for uncertainty, measurement or odometry errors.

• Reward. The concept of RL reward has no direct equivalent in MP,
although some MP approaches use artificial potential fields [Fakoor
et al., 2015]. However, when the target state is known, a sparse reward

24

can be added to this target (and to nearby states, since finding a point
in a continuous state space is a zero-probability event).

1.2.3 Policies and agents

A policy is a function π that maps a state s to a distribution over possible
actions A. Deterministic policies are simply functions S → A.

Functions of an infinite set cannot generally be represented using a finite
amount of information. Therefore, when the state space S is continuous,
policies need to be parametric: the output of the policy π depends on its
input s but also a set of continuous parameters collectively represented as a
vector θ. This output distribution is then written πψ(s), and this definition
is easily transposed to deterministic policies.

The interaction between policy and environment is the heart of an MDP,
and is depicted in Algorithm 1. All RL techniques studied in this thesis are
based on this cycle.

A learning agent is an algorithm that stores an internal state which
forms its experience. When a transition is observed between state s and s′

after performing action a, the agent collects this experience in the form of
a transition (s, a, r, s′), where r = Ra(s, s

′). The agent continuously collects
more experience through interactions with the environment using a policy π
(this process is called rollouts).

Algorithm 1: Basic experience collection on a MDP using a fixed
policy

Input : s0 ∈ S the initial environment state
A MDP (S,A, P,R)
A policy π

1 s← s0
2 while True do
3 Sample an action a according to policy π(s)
4 Sample a new state s′ in S according to distribution Pa(s, ·)
5 Obtain the reward Ra(s, s

′)
6 Update the current state s← s′

7 end

25

1.2.4 Q-Learning

From value iteration to Q-Learning

Q-Learning can be derived from the value iteration algorithm that is common
for finding optimal policies in finite discrete MDPs [Sutton and Barto, 2018a].

The following equation is the update rule for value iteration:

Vn+1(s) = max
a

∑

s′

Pa(s, s
′) (Ra(s, s

′) + γVn(s′)) .

Applying this equation to a deterministic environment yields:

Vn+1(s) = max
a

(R(s, a) + γVn(step(s, a))) .

We then introduce the state-action value function Q(s, a), describing the
expected reward from state s, given that the first action is a:

Vn+1(s) = max
a

(
R(s, a) + γVn(step(s, a))︸ ︷︷ ︸

Qn(s,a)

)
. (1.1)

By performing a change of index, and setting s′ = step(s, a), Qn+1(s, a)
can be written as:

Qn+1(s, a) = R(s, a) + γVn+1(s
′).

By substitution using Eq. (1.1), we get the state-action value update
equation:

Qn+1(s, a) = R(s, a) + γmax
a′

Qn(s′, a′)

The Q-Learning algorithm stores a table of state-action values and updates
it according to the previous equation. As it typically targets non-deterministic
environments, it relies on a soft update to guarantee convergence, introducing
an update rate hyperparameter α:

Qn+1(s, a) = (1− α)Qn(s, a) + α
(
R(s, a) + γmax

a′
Qn(s′, a′)

)

This equation can be generalized to continuous states by using a function
approximator for Q, which is the technique used in the Deep Q-Network
(DQN) algorithm. In Section 1.2.5 we introduce a way to generalize the
Q-Learning equation to environments with continuous action spaces, resulting
in the DDPG algorithm.

26

1.2.5 Deep Deterministic Policy Gradient

DDPG is one of the seminal RL algorithm for learning continuous behaviors
in continuous state spaces, while exploiting data collected from experience.
Some other algorithms fitting this description have emerged since, but DDPG
remains the most straightforward transcription of Q-Learning equations in
the realm of continuous state and action spaces, as described in Section 1.2.5.

The DDPG algorithm [Lillicrap et al., 2015] is a deep RL algorithm based
on the Deterministic Policy Gradient theorem [Silver et al., 2014]. It borrows
the use of a replay buffer and target networks from DQN [Mnih et al., 2015].

Derivation of DDPG from the base equation of Q-Learning

We remind the state-action value iteration equation, which we derived from
state value iteration in Section 1.2.4:

Qn+1(s, a) = R(s, a) + γmax
a′

Qn(s′, a′).

The maximization operation can be performed easily when the action-state
is finite, but in order to generalize to environments with continuous actions,
we factor out the maximization problem by introducing an actor function π
representing the policy:

{
Qn+1(s, a) = R(s, a) + γQn(s′, π(s′))

π(s′) = argmax
a′

Qn(s′, a′) .

Since Q and π are functions of continuous inputs, they both need to be
stored in a parametric form Qθ and πψ, which are commonly implemented as
neural networks:

{
Regress Qθ(s, a) towards R(s, a) + γQθ(s

′, π(s′))

Maximize Qθ(s, πψ(s)) w.r.t. ψ
.

This formulation defines DDPG as a bootstrapping algorithm: the value
estimate Q(s, a) is computed using Q(s′, π(s′)) where Q and π are themselves
approximations.

This optimization problem can be solved using a gradient descent algo-
rithm. Since Q is used to evaluate the performance of π, it is commonly
called the critic.

The actor and critic are updated using stochastic gradient descent on
two losses Lψ and Lθ. These losses are computed from mini-batches of
samples (si, ai, ri, ti, si+1), where each sample corresponds to a transition

27

si → si+1 resulting from performing action ai in state si, with subsequent
reward ri = r(si, ai). In some environments, some transitions are marked as
terminal, therefore we incorporate a termination index ti = t(si, ai) to the
critic update. Equations (1.2) and (1.3) define Lψ and Lθ:





∀i, yi = ri + γ(1− ti)Qθ′ (si+1, πψ′ (si+1))

Lθ =
1

2

∑

i

[
Qθ (si, ai)− yi

]2
.

. (1.2)

Lψ = −
∑

i

Qθ (si, πψ (si)) . (1.3)

As DDPG uses a replay buffer, the mini-batch samples are acquired using
a behavior policy β which may be different from the actor π. Usually, β is
defined as π plus a noise distribution, which in the case of DDPG is either a
Gaussian function or the more sophisticated Ornstein-Uhlenbeck noise.

Two target networks πψ′ and Qθ′ are also used in DDPG. Their parameters
ψ′ and θ′ respectively track ψ and θ using exponential smoothing and help
the convergence properties of the algorithm.

Training for the loss given in Eq. (1.2) yields the critic parameter update
in Eq. (1.4), with αc the learning rate. The multiplication by 2 comes from
the differentiation of the square.

θ ← θ − αc

∑

i

∂Qθ(si, ai)

∂θ

T

(Qθ(si, ai)− yi) . (1.4)

Note that in the second equation, the optimized variable is ψ, therefore
the gradient has to be computed using the chain rule. In the context of RL,
this is called the policy gradient trick. Training for the loss given in Eq. (1.3)
yields the actor parameter update in Eq. (1.5), with αa the learning rate:

ψ ← ψ + αa

∑

i

∂πψ(si)

∂ψ

T

∇aQθ(si, a)|a=πψ(si) . (1.5)

Characterization as an intermediate between two extreme regimes

In this section, we characterize the behavior of DDPG as an intermediate
between two extremes, that we respectively call the critic-centric view, where
the actor is updated faster, resulting in an algorithm close to Q-Learning,
and the actor-centric view, where the critic is updated faster, resulting in a
behavior more similar to Policy Gradient.

28

Actor update: the critic-centric view. The Q-Learning algorithm
[Watkins, 1989] and its continuous state counterpart DQN [Mnih et al.,
2013] rely on the computation of a policy which is greedy with respect to the
current critic at every time step, as they simply take the maximum of the
Q-values over a set of discrete actions. In continuous action settings, this
amounts to an intractable optimization problem if the action space is large
and non-trivial.

We get a simplified vision of DDPG by considering an extreme regime
where the actor updates are both fast enough and good enough so that
∀s, π(s) ≈ argmaxaQ(s, a). We call this the critic-centric vision of DDPG,
since the actor updates are assumed to be ideal and the only remaining
training is performed on the critic.

In this regime, by replacing π(s) with argmaxaQ(s, a) in Eq. (1.2), we
get yi = ri + γ(1− ti) maxaQ(si, a), which corresponds to the update of the
critic in Q-Learning and DQN. A key property of this regime is that, since
the update in based on a maximum over actions, the resulting algorithm can
learn from any transition even if it was collected using a policy that differs
from the current actor.

Such algorithms are called off-policy, the reverse being on-policy algorithms
that are only able to learn from data generated using their current policy,
and therefore need to discard collected data each time the policy changes.
Between these two extremes, a spectrum exists: some algorithms are more or
less robust to the difference between the sampling policy and their current
policy.

Chapter 6 explores the off-policyness of DDPG, but since the critic-centric
vision of DDPG yields the equations of Q-Learning which is fully off-policy,
we can infer that most of the off-policiness property of DDPG comes from
keeping it close to this regime. The notion of off-policiness is studied in more
detail in Chapter 4.

Critic update: the actor-centric view. Symmetrically to the previous
case, if the critic is updated well and faster than the actor, it tends to
represent the critic of the current policy, Qπ. Furthermore, if the actor
tends to change slowly enough, critic updates can be both fast and good
enough so that it reaches the fixed point of the Bellman equation, that is
∀(s, a, r, t, s′), Q(s, a) = r + γ(1− t)Q(s′, π(s′)).

In this case, the optimization performed in Eq. (1.3) mostly consists in
updating the actor so that it exploits the corresponding critic by applying the
deterministic policy gradient on the actor. This gives rise to a actor-centric
vision of DDPG.

29

1.3 Reset-anywhere

Our work makes heavy use of the ability to reset an environment to any state.
The use of this primitive is relatively uncommon in robotics RL because it
is not always readily available, especially in real-world robotics problems.
However, it can be invaluable to speed up exploration of large state spaces. It
was used in the context of Atari games by [Hosu and Rebedea, 2016], proposed
in [Schulman et al., 2015] as vine, and gained popularity with [Salimans and
Chen, 2018].

We can also note that although rare in the field of robotics-inspired RL,
this primitive is used both in the wider field of RL [Silver et al., 2016] and in
MP when exploring configurations.

Two different types of reset-anywhere exist: resetting to an already-visited
state, or resetting to an arbitrary state, that is known only by its configuration
q and generalized velocity q̇.

Resetting to an already-visited state This primitive is available in most
simulation software, and when unavailable (or in real-world robots) it can be
simulated by resetting the environment to its initial state and re-playing a
sequence of actions that led to the state in a previous visit. This requires the
environment to be deterministic, and more importantly it greatly decreases
the performance advantage of resetting.

Resetting to a new state This primitive cannot be simulated when not
available in the simulation software in the general case, because the sequence
of actions that leads to the desired state is unknown. This primitive is used
in our work to ensure the robustness of policies to changes in the initial
state of the robot, therefore this primitive can be approximated to finding an
arbitrary state s2 close to a known state s. This can be done by either adding
noise to a recorded sequence of actions that leads to s, or by simulating the
environment backwards from s (if available in the simulation software) with
random actions.

30

2
Related work

In each chapter of this work, we present methods and experiments that further
our research question: how to integrate components of Motion Planning
(MP) in Reinforcement Learning (RL) algorithms. Each chapter contains
contributions and novel analyses and, when applicable, a Related Work section
that details other efforts in tackling the same problem, or other works that
use similar methods.

In this chapter, we provide a more general overview of works that are a
bit further from our main thread, or otherwise do not fit in a specific chapter.

This thesis spans mostly on the domains of model-free RL and MP.
Although we believe it is an under-exploited area, the intersection between
the two fields is not empty, and many approaches tackle the problem of
exploration in model-free RL.

Most MP algorithms are not easily applicable to our problem statement,
and understanding them only gives marginal insight into our problem, there-
fore we do not attempt to complete a general survey of MP techniques.
However, the seminal MP algorithm for exploration, Rapidly-exploring Ran-
dom Tree (RRT), is studied in Chapter 3.

In this chapter, we begin by presenting a taxonomy of model-free RL
algorithms, inspired by the work of OpenAI [Achiam and Morales, 2018] and
augmented with considerations that are relevant to this thesis. Then, we
take a step back and present a wider survey of behavioral learning techniques
that are designed to explore state spaces with sparse rewards. Finally, we
explore previous attempts at combining MP and RL which are too dissimilar
to ours to be mentioned in the next chapter, but deserve a mention to paint
a complete picture of the research landscape.

31

Algorithm State-space Action-space Off-policy Actor type

PG continuous continuous no stochastic
PPO continuous both no stochastic
TRPO continuous both no stochastic
SARSA finite finite no deterministic
Q-Learning finite finite yes deterministic
DQN continuous finite yes deterministic
A2C continuous continuous no stochastic
DDPG continuous continuous yes1 deterministic
TD3 continuous continuous yes1 deterministic
SAC continuous both yes1 stochastic

1 This is disputed, see Chapter 6.

Figure 2.1: Properties of RL algorithms

2.1 Taxonomy of Reinforcement Learning al-

gorithms

RL is concerned with training an agent to maximize the reward it obtains
when interacting with the environment. In this thesis, we are only concerned
with model-free RL algorithms, which means that they only rely on trial-and-
error and do not use any other information about the environment [Sutton
and Barto, 2018b].

These algorithms can be classified by their properties, as summarized in
Fig. 2.1. Figure 2.2 summarizes the update equations for each algorithm.

Policy optimization approaches: PG, PPO, TRPO. Policy optimiza-
tion refers, as its name suggests, to incremental improvements of a learned
policy with respect to its discounted reward. These processes generally aim
to provide monotonic improvements of the reward, and use various techniques
to compute the best change to the policy parameters.

A key property of these algorithms is that they can only learn from
trajectories generated using their current policy. Therefore these algorithms
are said to be on-policy, the reverse being off-policy algorithms that are able
to learn from any trajectory.

On-policy algorithms are usually less sample-efficient than their off-policy
counterparts because they have to regenerate new trajectories for each pol-
icy update. Policy optimization algorithms include Policy Gradient (PG)
algorithms (such as REINFORCE [Williams, 1992]), Proximal Policy Opti-

32

Algorithm Update rules

SARSA
{
Q(st, at)

α←− r + γQ(st+1, at+1)

Q-Learning
{
Q(st, at)

α←− r + γmax
a
Q(st+1, a)

DQN
{
Q(st, at)

α
 r + γmax

a
Q(st+1, a)

A2C

{
V (st)

αv←− r + γV (st+1)

P π(at|st) is updated according to r + γV (st+1)− V (st)

DDPG





Q(st, at)
αQ
 r + γQ′(st+1, π

′(st+1))

π(st) is updated using the gradient of Q(st, π(st))

θQ′
αQ′
 θQ

θπ′
απ′ θπ

TD3





Q{1,2}(st, at)
αQ
 r + γ min

i=1,2
Q′i(st+1, π

′(st+1) + noise)

π(st) is updated using the gradient of Q1(st, π(st))

θQ′1
αQ′
 θQ1

θQ′2
αQ′
 θQ2

θπ′
απ′ θπ

These equations describe the update that is applied to the state of the learning
agent when a transition between states st and st+1 is observed after performing
action a. In the case of SARSA, st+1 is the action performed at the following
time step.
The notation f(x)

α←− g(x) is used to designate a soft update, that is f(x)←
αf(x) + (1 − α)g(x). When f is a discrete function, then f(x) ← y is an
update to a table, similar to dynamic programming. However, when f is a
continuous function then the update is performed using a regression with loss
1
2
(f(x)− y)2 and learning rate α, which we write f(x)

α
 y. These equations

present single updates, but several updates are commonly bundled together
using mini-batches.

Figure 2.2: Equations of RL algorithms.

33

mization (PPO) [Schulman et al., 2017] and Trust Region Policy Optimization
(TRPO) [Schulman et al., 2015].

Tabular algorithms: SARSA and Q-Learning. When the state and
action spaces are finite, the state-action value function can be stored exactly,
and a dynamic programming update can be performed to update its value.
Rollouts can be performed to collect new experience without the need to
maintain a separate actor, because the action to take from a certain state s
can be computed by finding argmaxaQ(s, a).

The two approaches that fit in this category are SARSA and Q-Learning.
They both use slightly different update rules detailed in Fig. 2.2. Q-Learning
is fully off-policy in the sense that if all the transitions composing an optimal
trajectory are sampled regularly, this algorithms will converge to an optimal
policy. SARSA on the other hand is not off-policy because its collected
experience (st, at, r, st+1, at+1) includes at+1 and the update rule requires that
at+1 converges towards an optimal action to take from state st+1.

Continuous-state and finite-action algorithm: DQN. Deep Q-Network
(DQN) can be seen as a generalization of Q-Learning to continuous state
spaces. The tabular critic Q is replaced with a function estimator (such as
a Multi-Layer Perceptron), but as with Q-Learning, the finite action space
allows finding the best action a for a given state s and critic Q by computing
argmaxaQ(s, a).

The hard update rule of Q-Learning is also replaced in DQN with a soft
update, computed as a regression which slowly changes the parameters of the
function approximator to tend towards the computed target. This allows the
function approximator to generalize slowly and reliably.

Continuous actor-critic approaches: A2C, DDPG, TD3 and SAC.
Actor-critic approaches have been first introduced for discretized problems
[Barto et al., 1983], however in this area they have been supplanted by Q-
Learning [Watkins, 1989] and other approaches which are simpler and allow
for convergence proofs. Today, the main benefit of actor-critic methods is
their ability to function in an environment with continuous states and actions.
Contrarily to DQN, this requires the use of a separate policy estimator
because the continuous actions do not allow the computation of an explicit
argmaxaQ(s, a).

The critic Q or V is used to estimate the state-action or state value
function, while the policy estimator (called the actor) is used to generate

34

rollouts, and is updated in order to estimate the best policy given the past
experience.

In the case of Advantage Actor Critic (A2C), the value function is esti-
mated using the same update rule as SARSA. Since only the value function is
estimated, there is no need for a maximization operation. The change applied
to the value function r + γV (st+1)− V (s) is called the Time-Difference Error
or TD-Error δ. It measures the difference between the expected value of a
state and its measured value in one transition. This TD-Error can be used
to update the actor: good surprises result in this action being chosen more
often, while bad surprises result in this action being chooses less often. Since
A2C uses a stochastic actor, this update is performed using the negative log
likelihood [Mnih et al., 2016].

Deep Deterministic Policy Gradient (DDPG) is studied in more detail
in Section 1.2.5, and generalizes DQN to continuous-control environments
by introducing a deterministic actor, which is updated using the gradient
of Q(st, πψ(st)) with respect to the policy parameters ψ. It also uses target
networks, which allows for smoother convergence.

Twin Delayed DDPG (TD3) is an extension of DDPG which uses two
critics to further stabilize the learning process, as well as mitigate an issue
with DDPG known as over-estimation bias. It also incorporates delayed
policy updates which makes it closer to the actor-centric view discussed in
Section 1.2.5, and adds clipped noise to the action used in the critic update.

Finally, Soft Actor-Critic (SAC) is a stochastic-policy Actor-Critic architec-
ture which incorporates an entropy maximization term. This forces the policy
to be as stochastic as possible, which improves the exploration capabilities
and prevents some of the issues we identified in DDPG in Chapter 6.

2.2 Exploration mechanisms for behavioral learn-

ing

Many approaches attempt to improve the exploration capabilities of RL
algorithms. The most straightforward way to improve exploration in RL is to
initialize the policy with an educated guess, which is then refined until it is
close to optimal. This makes a lot of sense when there are local minima in
the policy for instance in the MountainCar environment: the policy-space is
partitioned in several areas, some of which have deceptive gradients that lead
gradient-based optimization processes to sub-optimal policies.

This can be extended to sets of initial policies: a separate RL instance
can be trained using each policy, and after some time the best trained policy

35

is kept. Therefore, finding a diverse initial set of policies is a very promising
goal, and is the main focus of Quality-Diversity approaches [Pugh et al., 2016;
Cideron et al., 2020] such as Novelty Search with Local Competition (NSLC)
[Lehman and Stanley, 2011] or MAP-Elites [Mouret and Clune, 2015]. This
path leads directly to evolutionary algorithms, which are the seminal method
for discovering and selecting parametric agents [Ursem, 2002]. Diversity has
even been proposed as a full replacement to the RL reward signal, since
emerging locomotion behavior can be discovered simply though diversity
[Eysenbach et al., 2018].

Another set of algorithms do not explore the state-space or policy-space as
a first step, but instead enforce behavioral diversity through a form of reward
shaping. #Exploration [Tang et al., 2016] uses spatial hashing to penalize
transitions leading to already-visited areas, while SAC [Haarnoja et al., 2018]
maintains a stochastic policy by using an entropy maximization term in its
update rule.

The other class of methods to improve exploration in RL is to pre-seed
the experience replay buffer of an off-policy algorithm with varied data. This
was attempted for instance by GEP-PG [Colas et al., 2018], which uses Goal
Exploration Processes (GEP) [Forestier et al., 2017] to find a set of goals, and
generate samples that are preloaded in the replay buffer of DDPG. However,
in Chapter 6, we show that this technique is inherently limited by the fact
that even algorithms such as DDPG which have a replay buffer and are said
to be off-policy cannot always learn from data that is too different from their
current policy.

Some methods are closer to MP in the sense that they do not necessarily
aim at producing a robust controller, however they tackle the problem of
exploration by enforcing diversity in the set of paths they explore. This
idea of path diversity [Voss et al., 2015; Vonásek and Saska, 2018; Knepper
and Mason, 2009; Erickson and Lavalle, 2009] mirrors the ones found in
Quality-Diversity.

2.3 Attempts to use Motion Planning tech-

niques with Reinforcement Learning

In this category, we only list the approaches that use MP directly in the
configuration or state space. Algorithms that operate in the policy parameter
space are listed in the previous section. Approaches that exploit backtracking
or skill chaining are listed in Sections 5.2 and 7.1 respectively (pages 67, 97).

36

MP has been used as a primitive of a more general RL algorithm. In
[Yamada, 2020], an RL algorithm is used but its action space is not the joint
torque or speed, but instead the desired change in angle. In most RL settings,
the actor directly controls the torque or speed of the actuators, and the action
is therefore constrained to the maximum speed of the actuators over a single
time step. However, in [Yamada, 2020] the action can be much greater, and
when the magnitude of the selected action is above a certain threshold a
motion planner is used to achieve the desired displacement instead of a torque
controller.

On the other hand, RL has also been used as a primitive in MP. RL agents
are sometimes used as trainable controllers that perform simple tasks such
as torque control, however they can take a larger role. In [Faust et al., 2018;
Chiang et al., 2019], an RL agent is used as a local planner, and another as a
reachability estimator for the overarching MP architecture. The authors of
[Bharadhwaj et al., 2020] tackle vision-based MP, and also use a RL agent as
a reachability estimator.

In RL, goal-conditioned policies take as input not only the current state
but also the target (goal), and output an action. This allows for training with
hindsight : experience can be gathered from unsuccessful agents by moving
the goal, and recording them as a successful attempt to reach a different goal
[Andrychowicz et al., 2017]. This concept can be expanded to construct trees
of goal-oriented policies [Lai et al., 2020].

37

3
Using motion planning in a reinforcement

learning environment

Reinforcement Learning (RL) algorithms are designed to optimize a parametric
policy by incrementally increasing its return. However, they usually have
poor exploration mechanisms. On the other hand, efficient exploration is a
common and well-studied topic in the field of Motion Planning (MP), and
algorithms such as Rapidly-exploring Random Tree (RRT) are known to
explore high-dimensional state spaces efficiently. However, the framework
commonly used by RL algorithms is slightly different from the one in MP and
is detailed in Section 1.1.3. On the other hand, the minimum requirement for
RL algorithms is usually modeling the problem as a Markov Decision Process
(MDP), in which the only information about the environment is obtained
through interactions and rewards.

Therefore, transposing efficient exploration algorithms from MP to RL is
not always straightforward.

When testing an exploration algorithm, it can be hard to define a metric for
performance. However, the goal of exploration in the context of sparse-reward
environments is to find sources of reward as soon as possible. Therefore,
when comparing two exploration trees, we are interested mainly in its extent
(the set of points that are closer than ε to the tree, for some ε). Exploration
trees that maximize the extent also tend to have uniform densities, because
clumps of close nodes do not contribute as much to increasing the extent as
well-spread nodes.

In this chapter, we start by presenting the most classical version of RRT
in Section 3.1.1, then in Section 3.1.2 we show that a small change in the
algorithm allows it to operate under assumptions that are closer to those of
RL environments. However, in Section 3.1.3 we show that the performance

38

of RRT quickly diminishes when the reachable space is smaller than the
sampling space. In Section 3.3, we contribute a new algorithm called Ex,
which overcomes this limitation and has computational complexity O(1)
with respect to the size of the exploration tree. Finally, in Section 3.4 we
demonstrate the use of feature spaces as a dimension-reduction technique, by
showing that both RRT and Ex are able to find trajectories that reach sparse
rewards on the Ant-Maze environment.

3.1 Adapting Rapidly-exploring Random Tree

to RL Algorithms

3.1.1 Rapidly-exploring Random Tree

RRT, presented in Algorithm 2 and Fig. 3.1, takes a uniformly random sample
in the space (Line 4), and attempts to reach it (Line 6) from the tree’s nearest
node (computed on Line 5). This attempt results in a new state s′ (Line 7)
which is added to the tree (Line 8). The uniformity of the chosen sample
biases the algorithm towards exploring the biggest unexplored areas first.

However, RRT relies on three non-trivial primitives:

1. Line 6 of the algorithm relies on a heuristic function advance towards
which must be given as a primitive. This function takes as input a
pair of states (snear, starget), and returns an action a such that, ideally,
s′ = step(snear, a) should bring the environment closer to starget. This
can sometimes be computed when a forward model is known and sim-
ple enough, but in the general case, and especially in non-holonomic
environments, this heuristic is unavailable (see Section 1.1.2). In Sec-
tion 3.1.2, we show that this primitive can be replaced by selecting a
random action, at the cost of efficiency.

2. Line 4 relies on a primitive random state, which selects a state
uniformly in a sampling space. Although defining a bounded state-space
is usually straightforward (the robot is fully described by a vector of real
numbers and angles, and a vector of velocities and angular velocities
which can be bounded by velocities that are too large to simulate in
discrete-time), we show in Section 3.1.3 that the performance of RRT
decreases when the sampling space is larger than the reachable space.
This is a major caveat especially in highly-constrained environments 1.

1This is a well-known problem and some mitigations have been proposed [Shkolnik et al.,
2009; Wu et al., 2020] although they are beyond the scope of this work. When working with

39

Figure 3.1: Behavior of RRT. For each iteration, first srand is chosen randomly,
then its nearest neighbor in the exploration tree snear is found, and finally an
action a is chosen either using a heuristic (in the case of RRT), or randomly
(in the case of Rapidly-exploring Random Tree Non-Holonomic (RRT-NH)).
The resulting state s′ is added to the tree.

3. Line 5 relies on a distance function over states. This metric is used to
choose the already-explored state snear that is closest to the sampled
state starget. The reasoning is that to reach the area around starget, the
best starting point is the closest. Contrary to advance towards, this
is part of the core of RRT, and is responsible for biasing the exploration
toward unexplored areas. However, in environments with non-holonomic
constraints or thin obstacles, the distance between two states may not
be a good indicator of whether one can be reached from the other easily.

We test RRT on an environment with state space [0, 5]2, action space
[−0.1, 0.1]2 and step function s′ = s+ a. If s+ a is out of bounds, then s′ = s.

Figure 3.2(a) shows the result of running 2000 iterations of RRT in this
environment. In the following sections, we visually compare the extent of the
RRT tree with results from other algorithms.

humanoid robots, a more common algorithm is Probabilistic Roadmaps [Kavraki et al.,
1996], which uses a local planner to connect nearby states. Using this planner was not
needed for the scale of experiments we performed, although it may be a necessary trade-off
between exploration performance and expert input when working with larger benchmarks
such as humanoids.

40

Algorithm 2: Holonomic RRT

Input : s0 ∈ S the initial environment state
iterations ∈ N the number of samples to accumulate
d : S × S → R+ a distance function over states
step : S × A→ S × R× B the environment step function
random state, a function that returns a random state,

uniformly selected from the set of all possible states S
advance towards : S × S → A a function that suggests

an action to advance towards a new state
Output : transitions ⊆ S × A× R× B× S the set of explored

transitions

1 transitions← ∅
2 visited← {s0}
3 while |transitions| < iterations do
4 starget ← random state()
5 snear ← argmins∈visited d(s, starget)
6 a← advance towards(snear, starget)
7 s′, reward, terminal← step(snear, a)
8 transitions← transitions ∪ {(s, action, reward, terminal, s′)}
9 if Not terminal then

10 visited ← visited ∪ {s’}
11 end

12 end

41

3.1.2 RRT in RL environments

A variant of RRT relaxes the assumption that the advance towards
heuristic is available, by instead choosing a random action at each iteration.
The exploration is still biased towards unexplored areas because of the non-
random choice of snear. According to [Lavalle and Kuffner, 2000], this is
mainly useful for non-holonomic environments, therefore we refer to this
variant as RRT-NH, and present it in Algorithm 3.

Algorithm 3: Non-holonomic RRT

Input : s0 ∈ S the initial environment state
iterations ∈ N the number of samples to accumulate
d : S × S → R+ a distance function over states
step : S × A→ S × R× B the environment step function
random state, a function that returns a random state,

uniformly selected from the set of all possible states S
random action, a function that returns a random action

Output : transitions ⊆ S × A× R× B× S the set of explored
transitions

1 transitions← ∅
2 visited← {s0}
3 while |transitions| < iterations do
4 starget ← random state()
5 snear ← argmins∈visited d(s, starget)
6 a← random action()
7 s′, reward, terminal← step(snear, a)
8 transitions← transitions ∪ {(s, action, reward, terminal, s′)}
9 if Not terminal then

10 visited← visited ∪ {s′}
11 end

12 end

Figure 3.3(a) shows the result of running 2000 iterations of RRT-NH in
the same box environment we used in Fig. 3.2(a). We can observe that the
state space coverage is not as uniform as with RRT, which is expected. We
can also note that many transitions are clumped around the main branches of
the tree, which resembles the pattern of random walk. This is understandable
since RRT-NH is essentially a directed random walk.

42

(a) (b)

Figure 3.2: Running 2000 iterations of RRT in (a) a box environment and
(b) a box in which only an off-center disc is reachable.

(a) (b)

Figure 3.3: Running 2000 iterations of RRT-NH in (a) a box environment
and (b) a box in which only an off-center disc is reachable.

43

(a) (b)

Figure 3.4: Running 2000 iterations of Ex in (a) a box environment and (b)
a box in which only an off-center disc is reachable.

3.1.3 Limitations of RRT due to sampling

In the previous section, we showed that RRT could be implemented in RL
environments by removing the need for the advance towards primitive.
In this section, we show that the use of the random state primitive is also
a weakness that reduces the exploration efficiency of RRT-NH. RRT explores
an empty environment very quickly, however it shows major limitations when
the sampling space is larger than the reachable state space.

To demonstrate this, we modified our test environment so that the reach-
able space R is limited to only a disc-shaped subset of S = [0, 5]2, but S is
still used for sampling in RRT. This restriction was implemented by changing
the step function so that moving outside of the disc results in no change of
the state2.

The results are presented in Figs. 3.2(b) and 3.3(b), and show that the
density of the random tree inside the reachable space R is similar to the
density observed when running the algorithm without reachability restrictions.
In other words, only the samples that were selected inside of R contributed
to exploration.

Indeed, RRT biases exploration towards samples taken in S, which results
in an uneven distribution inside of reachable space R. This problem can
seem minor in this example, but we expect it to be worse with increasing
dimensionality, for the reasons stated in the previous paragraphs.

2In order to emphasize the effect, when s+ a is outside the disc, s′ is set to s+ ε, where
ε is a small perturbation. Therefore, areas where many such attempts were made appear
denser in the figures.

44

2

22
2

2

1

1

2
1

1

Figure 3.5: Behavior of Expansive Spaces Tree (EST). For a fixed distance d,
each node in the tree is assigned a score ω(s), which is the number of nodes
(including itself) closer than d. A node is sampled from the tree according to

1
ω(s)

, and k new states are sampled randomly in its neighborhood. ω is also
computed for these new states, and samples with high ω are discarded, while
the others are added to the tree.

These cases show the limitations of sampling-based exploration techniques:
they bias the search towards large unexplored areas, but are only efficient when
a good approximation of the reachable space is known, otherwise ”unexplored
areas” has a loose definition.

On the opposite end of the spectrum, an unbiased random walk fills the
reachable space, but with a non-uniform density: states closer to the starting
point are more likely to be seen. A middle-ground is found by performing a
random walk while favoring less-dense areas of the search tree, which is the
idea we explore in Section 3.3.

3.2 Expansive Spaces Tree

Expansive Spaces Tree (EST) [Hsu et al., 1997] is a MP algorithm that builds
an exploration tree similar to the one of RRT, but uses a different heuristic
when choosing from which node of the tree to expand. Figure 3.5 describes
the operation of the algorithm.

Where RRT and RRT-NH select the closest node to a randomly sampled
target, EST chooses a node x that minimizes ω(x), where ω(x) is defined as

45

the number of nodes that are too close to x, where too close is defined using
a threshold distance d that is a hyperparameter of the algorithm. Once the
node x from which to expand has been chosen, EST samples several candidate
targets close to x, and tries to add them to the tree.

Similar to RRT, EST requires either a reachability primitive or an ad-
vance towards primitive, however EST can be adapted to RL environments:
once a state s is selected using the ω distribution, random actions are applied
from state s to discover new states instead of sampling new states in the
neighborhood of s.

EST can also be used with a heuristic to bias the exploration direction,
although this heuristic may be hard to formulate in complex problems and
be deceptive [Phillips et al., 2004].

3.3 Ex

In this section, we propose a new exploration algorithm called Ex inspired
from EST [Hsu et al., 1997], which biases a random walk towards parts of
the tree that lie in less dense areas of the search space. Contrary to RRT, it
does not rely on sampling and is therefore immune to the issues presented in
Section 3.1.3.

3.3.1 Pitfalls of density as a measure for novelty

As described in Section 3.1.3, there are two main ways of building an ex-
ploration tree: biasing the exploration towards large unexplored areas by
sampling them and choosing nodes that are closest (this is the approach taken
by RRT and RRT-NH), and biasing the exploration towards areas in which it
has the lowest density (approach taken by EST, #Exploration and Ex).

However, we found a pitfall when using density as a metric, which is
summarized in Fig. 3.6. When using a disc kernel in order to count the
number of neighbor nodes, if the radius r of this kernel is smaller than the
maximum length of a graph edge, then exploring from a node n may not
increase the density around n. This can lead to a deadlock, especially if the
newly-created nodes land in a dense area, as depicted in Fig. 3.6.

Several approaches can be taken in order to eliminate this deadlock:

1. Ensure the size of the kernel is greater than the maximum edge length
of the exploration graph. This guarantees that the density around the
origin node n increases by at least one, and since any other density can
only be increased by one when adding a new node to the graph, this
guarantees the absence of deadlocks (providing ties in density values

46

Figure 3.6: Density paradox: in this exploration tree, the radius r used to
compute the density around a node is lower than the distance between two
consecutive states. Therefore, if the metric for density is the number of nodes
within a disc of radius r, then the density around the center node is 1, whereas
the density around the surrounding nodes is 3. As a result, the center node
appears to be a better choice for expansion of the search tree, causing more
nodes to be added around it. This increases the density in the ring around
the center, but not the density computed at the center, ultimately causing a
deadlock.

are handled randomly). Unfortunately, the maximum length of edges
in state-space is often hard to bound, or may even be unbounded in
some cases, which makes this approach unwieldy for all except simple
exploration problems.

2. Measure the density around node n as the number of nodes in the disc
kernel, but add any child nodes of n even if they lie outside the kernel.
This approach prevents the deadlock but is not as easy to implement as
the following.

3. Measure the density around node n as the sum of the number of children
of all nodes within the disc kernel, including n itself. In other words,
this amounts to counting the number of outgoing arrows within the
kernel (including arrows that leave the disc and arrows that stay in the
disc).

This third approach is the basis for our proposed algorithm Ex, which
is designed to bias exploration in less-dense parts of the search tree and is
presented in the following section.

47

(a) Behavior of RRT. For
each iteration, first srand
is chosen randomly, then
its nearest neighbor in
the exploration tree snear
is found, and finally an
action a is chosen either
using a heuristic (in the
case of RRT), or ran-
domly (in the case of
RRT-NH). The resulting
state s′ is added to the
tree.

2

22
2

2

1

1

2
1

1

(b) Behavior of EST.
For a fixed distance d,
each node in the tree
is assigned a score ω(s),
which is the number of
nodes (including itself)
closer than d. A node
is sampled from the tree
according to 1

ω(s) , and k
new states are sampled
randomly in its neighbor-
hood. ω is also computed
for these new states, and
samples with high ω are
discarded, while the oth-
ers are added to the tree.

1 1

21

1

1

2

0

1

0

(c) Behavior of Ex. For
each graph node, the
number of outgoing
edges is counted. For
each bin, another counter
(here in red) keeps track
of the number of all
node counters in the
bin. At each step, the
non-empty bin with
the lowest counter is
selected, and in this bin
the node with the lowest
counter is selected.

Figure 3.7

3.3.2 The Ex algorithm

In this section, we contribute an algorithm called Ex which builds an explo-
ration tree in a MDP in O(1) time3 by expanding the tree from well-selected
explored states with random actions. Ex differs from RRT-NH in the choice
of the visited states from which to explore. While RRT-NH samples distant
states and selects the nearest visited state, Ex selects a state that is in a
less-explored region of the search tree. The definition of less-explored is a
combination of the number of times this state was selected, and the number
of times nearby states were selected, using binning to define nearby states
efficiently.

The Ex algorithm is presented in Algorithm 4, and illustrated in Fig. 3.7(c).

3Each expansion operation increases the size of the tree by 1 and is performed in O(1)
time on average

48

The core idea of the algorithm is to divide the state-space in bins, and
maintain the following counters:

1. For each node s in the search tree, its number of children cs

2. For each state-space bin b, the total number of children of all nodes in
the bin cb =

∑
s∈b cs.

At each iteration of Ex, a state is chosen in the search tree in two steps:
first, the bin b with the lowest cb is chosen. Then, the node s ∈ b with the
lowest cs is selected. The environment is reset to this state s, and a random
action is performed. The resulting state s′ is added to the search tree and
the counters are updated accordingly.

When several bins or states are tied for the lowest cb or cs, then one of
the possible tied bins or states is chosen uniformly randomly.

Algorithm 4 presents an overview of Ex, while Algorithm 5 describes how
Ex can be implemented so that each iteration is performed in O(1) time.

O(1) implementation of Ex. The O(1) implementation of Ex presented
in Algorithm 5 relies on these principles:

1. Hash tables are used in order to quickly lookup data about a bin, using
a spatial hashing technique to find the correct bin for any given state
in constant time. For instance, in a n-dimensional state-space, a grid
with resolution 1 × . . . × 1 (meaning bins have size 1 × . . . × 1) can
be implemented by the following spatial hash: state (s1, . . . sn) can be
mapped to the integer coordinates (bs1c, . . . bsnc), which can then be
hashed using any tuple hashing function.

2. In order to keep track of the number of outgoing edges from bins, all
bins with the same number of outgoing edges c are stored in a list Wb[c].
A variable m keeps track of the lowest c.

3. States within a bin are stored in a similar manner, grouped by their
number of outgoing edges in a hash table Bs that maps a bin hash b
and state counter c to the list of states in bin b that have c outgoing
edges. The minimum number of outgoing edges in a bin b is kept in
Bm[b].

Selecting a state from which to expand in the search tree is done in
constant time by selecting a bin hash b randomly in Wb[m], and moving this
bin hash to the next group Wm[m+ 1] since a single outgoing edge is going to

49

be added to it. The counter m is incremented if this causes Wm[m] to become
empty.

In order to select a state in this bin b, first the minimum number of
outgoing edges for a state in this bin is looked up in the hash table Bm. This
value is mb = Bm[b]. A state is randomly selected from Bs[b][mb] and moved
to the next group Bs[b][mb + 1]. Bm[b] is incremented if the originating group
becomes empty.

In this analysis we considered that the state-space dimension d was not a
variable and focused on the computational complexity with respect to the
number of traversed states n. The state-space dimension affects both RRT
and Ex similarly. Note that although the spatial hashing used by Ex is
asymptotically faster than the nearest-neighbor search of RRT, both EST
and RRT have approximate variants that reduce their complexity to O(1)
through various techniques including spatial hashing [Leskovec et al., 2020].

Algorithm 4: Ex algorithm

Input : s0 ∈ S the initial environment state
step : S × A→ S × R× B the environment step function
iterations ∈ N the number of samples to accumulate
Bin : S → N a binning function

Output : The search tree
1 Initialize the exploration set T to a single node s0
2 cs0 ← 0
3 while |search tree| < iterations do

4 b← argmin
b∈{Bin(s),s∈T}

∑

s∈T,Bin(s)=b

cs

5 s← argmin
s∈T,Bin(s)=b

cs

6 Increment cs
7 a←random action()
8 s′, reward, terminal← step(s, a)
9 T ← T ∪ {s′}

10 If cs′ is undefined, then cs′ ← 0

11 end

3.3.3 Related work

EST. In Section 3.2, we described the EST algorithm. Ex is different from
EST in three major aspects:

50

Algorithm 5: Ex algorithm

Input : s0 ∈ S the initial environment state
step : S × A→ S the environment step function
iterations ∈ N the number of samples to accumulate
BinHasher : State→ BinHash a binning function that
maps a point in state space to a bin hash

Output : The search tree
1 Wb is a hash table Int→ List(BinHash)

2 Bs is a hash table BinHash× Int→ List(State)

3 Bm is a hash table BinHash→ Int

4 m← 0
5

6 exInsert(s0)
7 for i← 0 to iterations do
8 s←exSelect()

9 a←random action()
10 s′ ← step(s, a)
11 exInsert(s′)
12 end
13

14 Function exInsert(s)
15 b ← BinHasher(s)
16 if b /∈ Bm.keys() then
17 m← 0
18 Wb[0].append(b)

19 end
20 binInsert(b, s)

21 Function binInsert(b, s)
22 Bs[b][0].append(s)
23 Bm[b]← 0

24 Function exSelect()

25 b← a random element from list Wb[m]
26 Remove b from the list Wb[m]
27 Wb[m+ 1].append(b)
28 If Wb[m] is empty, then m← m+ 1
29 return binSelect(b)

30 Function binSelect(b)
31 mb ← Bm[b]
32 s← a random element from list Bs[b][mb]
33 Remove s from the list Bs[b][mb]
34 Bs[b][mb + 1].append(s)
35 If Bs[b][mb] is empty, then Bm[b]← mb + 1
36 return s

51

1. Ex does not use the number of close nodes as a metric for density, but
instead uses a counting method based on a fixed grid.

2. Once a node from which to expand has been chosen, Ex performs a
random action from this node similarly to RRT-NH.

3. Ex can be implemented so that it chooses the node from which to
expand in constant time, whereas EST requires several nearest-neighbor
operations for each expansion.

#Exploration. On the RL side, Ex is closest to #Exploration [Tang
et al., 2016], an algorithm that shapes the reward used by a RL algorithm
to penalize states that have already been explored. The method used to
determine whether a state is novel is very similar to Ex, and uses a grid-based
counter. However, this novelty measure is not used to build an exploration
tree but rather to guide a RL algorithm towards novel regions.

3.4 Experiments using a feature space

3.4.1 The curse of dimensionality

At this point, it seems important to mention the curse of dimensionality[Pratt,
2018]: in state-spaces with high dimensionality, the notion of density gets
weaker, and a random walk has exponentially low probabilities of encountering
itself [Erdős and Taylor, 1960]. In other words, large spaces are easier to
explore because random walks are likely to always yield novel states, in the
sense that they are far apart in Euclidean space. However this distance gives
equal importance to all state-space parameters: joint angles and floating base
coordinates. This may not reflect the actual exploration that is desired, which
in the case of a mobile robot would be the exploration of the environment.
Exploring the set of robot poses is necessary to some extent, but only as a
means to move in the environment.

This curse affects bin-based algorithms such as Ex slightly less because
bins are a representation of the uniform norm4: a bin with center c and edge
size 2r is the set of states {s | ‖s− c‖∞ ≤ r}.

This means that the number of bins needed to cover a state-space [0, R]D

with bins of size 1 is RD. As a comparison, using Euclidean norm (or

4Also called infinity norm

52

hypersphere) kernels, covering the same state-space would require RDD
D
2

spheres5.
RRT and EST could both be implemented using the uniform norm, but

the implications of this change are beyond the scope of this work. Indeed, in
robotics problems we need to explore high-dimension state spaces, and when
D is on the order of 40, both RD and 2RDD

D
2 are equally intractable.

3.4.2 Feature spaces

In a robot with many degrees of freedom, exploring each and every possible
pose is not desirable. Instead, the objective is exploring high-level motions
such as moving the floating base in the 3D environment. The low-level motion
of articulations and controllers can be handled by random-walk motion alone.

This can be achieved by introducing a feature function f : S → F that
maps a state s to a smaller vector in a feature space, which is used to drive
the exploration.

This concept can be implemented in RRT-NH by computing the distance
between f(s) and f(starget) instead of between s and starget. It can also be
implemented in Ex by changing the binning function to hash f(s) instead of
s. An example of feature function is described in Section 3.4.3.

Many high-dimension mobile robotic environments have a straightforward
feature space which is the position and orientation of the root link of the robot,
however in the general case the choice of a feature space is an expert input
which greatly conditions the exploration process and limits the generality of
this work.

In the following section, we use feature spaces to benchmark Ex and RRT
on the AntMaze environment which has 8 action parameters, 14 degrees of
freedom and a state-space of dimension 28.

3.4.3 Benchmark on Ant-Maze

We tested the performance of Ex and RRT-NH on a benchmark called
AntMaze [OpenAI, 2018] which features a mobile four-legged robot with 14
degrees of freedom and 28 state variables traversing a 2x2 maze, similar to
the ones studied in Chapter 4. Figure 3.8 shows a render of the AntMaze
environment.

We tested RRT-NH and Ex on this environment by using the (x, y)
coordinates of the mobile robot as a feature space. In other words, when

5This result is found by densely packing the hypercubes inscribed in the hyperspheres
of dimension D, which have size D−

1
2 when the hyperspheres have radius 1

2 .

53

Figure 3.8: Render of the AntMaze environment. The initial position of
the robot is the bottom-left hand corner of the maze and the goal is in the
top-left hand corner.

computing the spatial hashing function of Ex or the nearest point in RRT-NH,
only the global position in the maze is taken into account instead of each
angle and velocity of the system.

We ran these simulations with several seeds, and present the results in
Fig. 3.9. Ex significantly outperformed RRT in this environment, finding
the reward quickly, while RRT was often unsuccessful after 600k steps and
had to be interrupted. Although it was not the main focus of this study and
therefore not visible in Fig. 3.9, the wall clock time was also significantly in
favor of Ex with all 100 seeds finishing within a day, while RRT has to be
interrupted after several weeks.

3.5 Conclusion

In this chapter, we showed that MP algorithms such as RRT-NH are a viable
solution when exploring even high-dimension RL environments, and proposed
a novel algorithm called Ex that outperforms RRT on AntMaze and offers
different properties that make it more suited to some classes of problems
where the sampling space required by RRT is hard to define.

54

0 100k 200k 300k 400k 500k 600k
Steps before success

0%

10%

20%

30%

40%

50%

60%

70%

Oc
cu

re
nc

e
ra

te

Ex (N=101)
RRT (N=48)

All runs interrupted
after 600000k steps

Figure 3.9: Performance of Ex and RRT-NH in the AntMaze environment.
The simulation was run with different seeds, and the x-axis represents the
number of environment steps before the reward was found. The simulation is
considered a failure when the reward is not found within 600k steps.

Exploration is
hard for RL
algorithms

Motion planning

With adequate adjustments, MP algorithms can explore RL environments
efficiently.

In the next chapter, we show that these MP methods outperform RL
algorithms in exploration tasks, however converting the exploration data
to a robust controller is a difficult task, that cannot be solved by simply
bootstrapping so-called off-policy RL algorithm with this data.

55

4
Exploiting exploration data in Reinforcement

Learning through the experience replay buffer

In the previous chapter, we presented several algorithms adapted from the
field of Motion Planning (MP) which are able to find sparse rewards. These
algorithms output a tree of states, which may contain one or more paths
from the starting state to a rewarded state. When controlling an actual
robot, the list of actions required to reach the goal can be implemented in the
form of an open-loop controller, or a trajectory-following controller. However,
open-loop control has limited applications because it is not resilient to outside
perturbations, and trajectory-following controllers usually require a model of
the robot. Furthermore, experience shows that optimizing this trajectory can
be a hard problem even when a model of the robot is known, and it gets harder
for robots with complex dynamics and many non-holonomic constraints.

Closing the loop is notoriously difficult, especially since in the context of
Reinforcement Learning (RL) environments very little is known about the
control law of the robot. On the other hand, RL algorithms directly output a
controller that is resilient to noise and perturbations.

Therefore, a major challenge of robotics is transferring the knowledge
acquired through MP to a controller trained using RL.

In this chapter, we dive deeper in the characteristics of the exploration
data resulting from MP and the components of Deep Deterministic Policy
Gradient (DDPG) to find how the two can be combined. First, we build an
intuition by observing the behavior of DDPG, Rapidly-exploring Random Tree
Non-Holonomic (RRT-NH) and Ex on simple continuous mazes in which walls
are generated in a 2× 2 grid (all environments in this thesis are continuous
therefore we simply refer to them as 2 × 2 maze environments). Then, we
attempt to transfer exploration data by pre-loading the DDPG experience

56

replay buffer with transitions from an exploration algorithm. Although some
promising results are observed and provide insight in the inner workings of
DDPG, these results do not scale. This leads us to present an argument in
Section 4.7 for the need to exploit the connectivity of the exploration tree
instead of individual transitions.

4.1 Experimental setup

In this chapter, we run experiments in a 2× 2 maze environment with thin
walls and a sparse reward. The agent starts at (.5, .5), and the reward is −1
if the agent touches the wall, 1 if the Euclidean distance to the goal (.5, 1.5)
is less than 0.2, and 0 otherwise. No state is terminal, and when performing
DDPG rollouts we add a 10% chance that a random action is applied instead
of the policy.

More formally, the environment is described by the following Markov
Decision Process (MDP):

S = [0, 2]× [0, 2]

A = [−0.1, 0.1]× [−0.1, 0.1]

step(s, a) =

{
s if [s, s+ a] intersects a wall

s+ a otherwise.

R(s, a, s′) = 1‖s′−(.5,1.5)‖<0.2 − 1[s,s+a] intersects a wall

In this thesis, unless specified otherwise DDPG is used with its default
parameters from the OpenAI Baselines implementation [Github, 2020b].

4.2 Behavior of DDPG, RRT-NH and Ex on

mazes

Figure 4.1 shows the behavior of DDPG over 10k steps in our test environment.
We observe that DDPG trained a policy that avoids the walls but does
not reach the reward. This is expected since DDPG has a basic built-in
exploration mechanism, and touching the walls carries a high penalty. This
is an example where the exploration-exploitation trade-off is exacerbated by
deceptive rewards.

Figures 4.2(a) and 4.2(b) show the exploration pattern of Ex and RRT-NH
up to the first reward found. It shows that both algorithms are able to find
the reward very quickly, as expected for algorithms designed for exploration
and that exploit the reset-anywhere primitive.

57

0.0 0.5 1.0 1.5 2.0
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

3

2

1

0

1

Figure 4.1: State of DDPG after 10k training steps in a 2 × 2 maze. The
green gradient represents the function Q(s, π(s)) where Q and π are the critic
and actor trained by DDPG. The black arrows show the direction of π(s),
and the red line is a single rollout of DDPG.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0

31

(a)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0

51

(b)

Figure 4.2: In blue, exploration pattern of (a) RRT-NH and (b) Ex. The
color value indicates the depth of each transition in the exploration tree.
Exploration stops as soon as a single rewarded transition is found, and the
corresponding path is shown in red. This path is about (a) 3 or (b) 5 times
longer than the optimal path.

58

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0

51

(a)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0

93

(b)

Figure 4.3: 5k exploration steps of (a) RRT-NH and (b) Ex. The color value
indicates the depth of each transition in the exploration tree. Contrary to
Fig. 4.2, the exploration continues regardless of any reward found.

However, this exploration data does not give a full picture of the environ-
ment: most of the walls have not been found, therefore we cannot reasonably
expect DDPG to be able to improve on this path. Figures 4.3(a) and 4.3(b)
show the coverage reached when we let the exploration continue for a fixed
number of steps, even if the reward is found earlier, so that the set of transi-
tions covers the full set of possible state-action pairs near-uniformly. These
figures use 5k exploration steps for clarity, but the following experiments are
performed with 10k exploration steps.

4.3 Motivation

In this chapter, we make the argument that DDPG cannot make full use of
the set of transitions collected by a MP algorithm such as RRT-NH or Ex, and
therefore is not fully off-policy. An algorithm that can learn from a fixed set of
data and nothing more is called an Offline or Batch Reinforcement Learning
algorithm [Lange et al., 2012]. Therefore, we test to what extent DDPG can
be used in an offline setting. Some offline RL algorithms have already been
proposed for continuous-state and continuous-action environments, but are
beyond the scope of this work, see [Levine et al., 2020] for a recent survey. In
Section 4.7 we argue that even such algorithms would have issues learning
from a set of transitions in some challenging environments with thin walls.

59

4.4 Methods

The following section studies two variants of DDPG that exploit exploration
data. The first variant, offline DDPG, is defined as such:

1. First, a set of transitions is collected using Ex.

2. Then, this set of transitions is inserted into the experience replay buffer
of DDPG.

3. Finally, DDPG is run but no new experience is collected: the replay
buffer is not modified and no rollouts are performed. Instead, the actor
and critic networks of DDPG are simply allowed to converge by training
them using the usual losses.

In the second variant called bootstrapped DDPG, the DDPG algorithm is
able to collect additional experience while training, but is still bootstrapped
with the transitions obtained from the exploration phase. Bootstrapped
DDPG is defined as:

1. First, a set of transitions is collected using Ex.

2. Then, this set of transitions is inserted into the experience replay buffer
of DDPG.

3. Finally, DDPG is run and new experience is collected using rollouts
and appended to the experience replay buffer.

4.5 Results

Figure 4.4 shows the actor and critic that are trained by offline DDPG, which
does not record any further experience except the exploration data given by
Ex. It shows that the reward was indeed acknowledged and results in a high
critic value, however the wall seems to be completely transparent, and the
resulting actor is not able to solve the environment.

However, as shown in Figs. 4.5(a) and 4.5(b), bootstrapped DDPG quickly
finds the reward.

60

0.0 0.5 1.0 1.5 2.0
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

60

65

70

75

Figure 4.4: Actor and critic trained by offline DDPG: 10k exploration transi-
tions from Ex are preloaded in the replay buffer and no new experience is
added during training

0.0 0.5 1.0 1.5 2.0
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

1

0

1

2

3

(a)

0.0 0.5 1.0 1.5 2.0
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

5

0

5

10

(b)

Figure 4.5: State of bootstrapped DDPG when its replay buffer pre-filled
with 10k transitions obtained using Ex, after (a) 1000 (b) 2000 rollout steps.
Note the different color scales.

61

0 1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

50

40

30

20

10

0

10

Figure 4.6: State of bootstrapped DDPG when its replay buffer is pre-filled
with 20k transitions obtained using Ex, after 20k rollout steps

4.6 Analysis

Looking closely at the critic values along the wall shows the mechanisms
of this recovery. Initially, the actor learns from the optimistic critic that
the best course of action is to go straight into the wall. Transitions hitting
the wall were already present in the experience replay buffer, however now
that the rollouts are heading straight into the wall, the number of such
transitions increase, which causes them to become more prevalent in sampled
mini-batches. In turn, the critic values near the wall decrease until the actor
is led towards a new path.

In this example, it is clear that the existence of transitions indicating the
position of the wall is not enough: their number and therefore prevalence
is a critical factor in the update of the critic. Therefore, DDPG is only
able to function properly when the distribution of samples in its experience
replay buffer roughly approximates the behavior of its current actor. This
is an argument for a more precise definition or a method of measuring how
off-policy an algorithm is.

Although the exploration data alone was not enough for DDPG to solve
the 2 × 2 environment, preloading the exploration buffer with exploration
data while retaining the standard DDPG rollouts helped it stay optimistic
about the existence of reward, and prevented the deadlock we observed when
no exploration data was provided.

This seems like a promising approach, and was used by [Hollenstein et al.,
2019; Colas et al., 2018] but, as we show in Fig. 4.6, this technique rapidly
falls short in more complex environments because the rollout data overwhelms
the exploration samples and the critic “forgets” about the existence of the
reward.

62

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

(a)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

(b)

Figure 4.7: Mini-batch of 100 transitions from exploration data generated by
Ex on a 2× 2 maze. The information is displayed (a) with and (b) without
the maze environment and outlines the difficulty of finding the wall when the
data is presented as a disjointed set of transitions, one mini-batch at a time.

In the next section, we argue that no RL algorithm can learn from the
set of transitions generated by Ex or DDPG in this 2× 2 maze because the
representation of this exploration data lacks connectivity information.

4.7 Thin walls and the limits of “sets of tran-

sitions”

In this section, we perform a thought experiment in which we consider the
work to be done by a RL algorithm that receives exploration data in the form
of a set of transitions that is pre-loaded in its experience replay buffer, and
which are then sampled one mini-batch at a time.

Fig. 4.7(a) shows a mini-batch of 100 transitions extracted from an Ex
exploration tree. As the RL algorithm has no knowledge of the environment
except through the collected experience, Fig. 4.7(b) is a better representation
of the task that is expected of an offline learning algorithm. This shows the
loss of information when converting a tree to a set of disjointed transitions;
Since there is no reasonable way of finding the wall from this data (even
when using multiple mini-batches), any off-policy algorithm that maintains
some form of heuristic based on the state (such as an actor and a critic) will
propagate the reward signal through the thin wall and output a non-optimal
policy.

Several elements of this problem deserve more consideration.

63

Thin walls. Thin walls are a notoriously difficult element of RL problems
[Penedones et al., 2018], since the state and state-action value functions
are discontinuous around these features, and discontinuous functions are
hard to approximate using neural networks. Furthermore, attempting to
approximate discontinuous functions can cause unbounded gradient values
at the discontinuity, causing challenges in the optimization process itself,
ultimately leading to stability issues and divergence.

Note that thin walls in C-space do not necessarily translate to actual
thin walls in the environment. Non-holonomic constraints such as the ones
introduced by non-slip contacts introduce discontinuities of the C-space which
can cause similar issues.

Reward signal. The behavior of RL algorithms is already greatly influenced
by the reward signal, but these differences are also relevant when using them
in an offline learning setting. First, note that setting a negative reward to
hitting walls has an impact on the behavior of the agent because it changes the
exploration-exploitation trade-off. As observed in Fig. 4.1, DDPG converges
towards a sub-optimal policy avoiding the negative reward of hitting the walls.
Removing this penalty can change the learning dynamics of the environment.

Collision semantics. What happens when the agent hits the wall can
seem obvious because we are used to the physical world, but in a discrete-time
simulation, several implementations are equally applicable. The first option
is to prevent collisions by removing the invalid actions from the set of actions
from which to choose from. This is often done in environments with finite
state and actions, but is harder when the actor is defined as continuous policy.

Another option is to accept the transition, but prevent any motion by
setting s′ = s. With a deterministic policy π that selects this action a in
state s, the state-action value of this case is Qπ(s, a) = r

1−γ where r is the
reward of this transition.

Finally, the next-state s′ can be chosen by traveling in the direction given
by a until reaching the wall. This is a tricky case because s′ will be exactly on
the wall, and in the MDP setting no information is stored about the origin of
the agent that resulted in this ambiguous state. In a simulated environment
with floating-point imprecision, the agent may end up crossing the wall.

4.8 Conclusion

In this chapter, we showed experimentally that pre-loading exploration data in
the replay buffer of an off-policy RL algorithm allowed the critic to reflect the

64

location of the reward, but failed to propagate it according to the transition
rules of the environment. Then, we showed that treating the exploration data
as a disconnected set of transitions caused thin walls to be virtually invisible,
highlighting the need to retain some connectivity data of the exploration tree
for the RL phase.

Motion planning
Motion plan-
ning data is
hard to use

In the next chapter, we present a solution that exploits the connectivity data
of the exploration in the form of a single valid trajectory from the starting
position to the reward.

65

5
Exploiting exploration data as a training

curriculum: backtracking

In the previous chapter, we concluded that even though Motion Planning
(MP) algorithms may be able to find the sparse reward in an environment,
using the resulting exploration tree is not straightforward. More specifically,
splitting the exploration tree in a set of randomly shuffled transitions from
which to learn incrementally causes valuable connectivity data to be lost.
For instance, in mazes with thin walls this connectivity data is required to
propagate the reward.

In this chapter, we contribute a novel algorithm called Plan, Backplay
(PB), inspired by Backplay [Resnick et al., 2018]. A single state-space path
linking the starting state to the reward is extracted from the exploration
tree, and used as a curriculum for training a Reinforcement Learning (RL)
algorithm on increasingly difficult portions of the full environment.

In Section 5.2, we present similar approaches to ours, and explain their
similarities and differences. In Section 5.3, we present the actual PB algorithm
and in Section 5.4 we describe a set of maze environments which we use to
test the algorithm. Section 5.6 presents our results and an interpretation.

5.1 Introduction

RL algorithms have been used successfully to optimize policies for both
discrete and continuous control problems with high dimensionality [Mnih
et al., 2013; Lillicrap et al., 2015], but fall short when trying to solve difficult
exploration problems [van Hasselt et al., 2018; Achiam et al., 2019; Schaul
et al., 2015]. On the other hand, MP algorithms such as Rapidly-exploring
Random Tree (RRT) [Lavalle, 1998] are able to efficiently explore in large

66

cluttered environments but, instead of trained policies, they output trajectories
that cannot be used directly for closed loop control.

In this chapter, we consider environments which present a hard exploration
problem with a sparse reward. In this context, a good trajectory is one that
reaches a state with a positive reward, and we say that an environment
is solved when a controller is able to reliably reach a rewarded state. We
illustrate our approach with 2D continuous action mazes.

If one wants to obtain closed loop controllers for hard exploration problems,
a simple approach is to first use an MP algorithm to find a single good
trajectory τ , then optimize and robustify it using RL. However, using τ as a
stepping stone for an RL algorithm is not straightforward. In this chapter,
we propose PB, an approach that fits the framework of Go-Explore [Ecoffet
et al., 2019], but uses a modified version of the Backplay algorithm [Resnick
et al., 2018].

PB has two successive phases. First, the environment is explored until
a single good trajectory is found. Then this trajectory is used to create a
curriculum for training Deep Deterministic Policy Gradient (DDPG). More
precisely, PB progressively increases the difficulty through a backplay process
which gradually moves the starting point of the environment backwards along
the trajectory resulting from exploration.

The main contribution of this chapter is a variant of the Backplay algo-
rithm, which may seem very similar to the original, but actually lays the
groundwork for the integration of skill chaining presented in Chapter 7.

5.2 Related work

To our knowledge, the closest approach to ours is the Go-Explore frame-
work [Ecoffet et al., 2019], but in contrast to PB, Go-Explore is applied to
discrete problems such as Atari benchmarks. In a first phase, a single valid
trajectory is computed using an ad hoc exploration algorithm. In a second
phase, a learning from demonstration (LfD) algorithm is used to imitate
and improve upon this trajectory. Go-Explore uses Backplay [Resnick et al.,
2018; Salimans and Chen, 2018] as the Learning from Demonstration (LfD)
algorithm, with Proximal Policy Optimization (PPO) [Schulman et al., 2017]
as policy optimization method.

Some approaches are similar in the sense that they learn increasingly
large portions of the problem by moving the initial state backwards, but they
are undirected in the sense that they attempt to reach the goal from any
starting position, until they happen to reach the original initial state of the
environment. These approaches include Recall Traces [Goyal et al., 2019]

67

in which a backtracking model is used to grow the tree backwards, Reverse
Curriculum Generation [Florensa et al., 2018] in which the starting points
are sampled using forward iteration of the environment and BaRC [Ivanovic
et al., 2019] in which the priors are computed using an approximate physical
model of the environment.

Morere et al. [2020] present an approach that is similar to ours, and also
fits the framework of Go-Explore. In phase 1, they use a guided variant of
RRT, and in phase 2 they use a LfD algorithm based on Trust Region Policy
Optimization (TRPO). Similarly, PB follows the same two phases as Go-
Explore, with changes to both phases. In the first phase, we substituted the
exploration process of Go-Explore for Ex, which we presented in Section 3.3,
and in the second phase, we replaced Backplay with a variant that we found
easier to control, and replaced the underlying RL algorithm PPO with the
more sample efficient DDPG.

The Backplay algorithm in PB is a deterministic variant of the one
proposed by Resnick et al. [2018]. In the original Backplay algorithm, the
starting point of each policy is chosen randomly from a subset of the trajectory,
but in our variant the starting point is deterministic: the last state of the
trajectory is used until the performance of DDPG converges (more details are
presented in Section 5.3), then the previous state is chosen, and so on until
the full trajectory has been exploited.

5.3 Backtracking algorithm

Figure 5.1(a) describes PB. The algorithm is split in two successive phases,
mirroring the Go-Explore framework. In a first phase, the environment is
incrementally explored using Ex (described in Section 3.3) until a single
rewarded state is found. In a second phase, a single trajectory provides a
list of starting points, that are used to train a single DDPG instance on
increasingly difficult portions of the full environment, until the agent is able
to reliably reach the target when starting from the original starting point of
the environment.

The Backplay algorithm was originally proposed in [Resnick et al., 2018].
The main difference between the original algorithm and our variant is that
the original Backplay uses a sliding window along the trajectory τ , in which
the starting state is chosen randomly for each environment reset. The sliding
of the window is controlled by hyperparameters.

In contrast, our version of the algorithm has a deterministic starting point,
therefore the stochasticity during training relies solely on the action noise
added in the training process. This would be equivalent to setting the window

68

Using Ex, find a single suc-
cessful trajectory τ0 . . . τT

K = T − 1

Train using environ-
ment reset point τK

Test

K = K − 1

100%< 100%

(a) Simplest version of the PB al-
gorithm. A single successful trajec-
tory τ0 . . . τT is computed using Ex,
and the backtracking algorithm trains
DDPG by moving the starting point
of the environment backwards as soon
as the policy is deemed good enough.

Using Ex, find a single suc-
cessful trajectory τ0 . . . τT

K = T − 1

Test

Train using environ-
ment reset point τK

Test

K = K − 1

< 100%

100%

100%

< 100%

(b) PB algorithm with a pretesting
step used to bypass training in case
the policy already achieves 100% suc-
cess before any training is performed
with the new reset point τK .

Figure 5.1: Variants of the PB algorithm.

size of the original Backplay algorithm to 1. However, the progress of the
reset point is controlled by the performance of the policy instead of being
preprogrammed: the reset point is changed only when the policy reaches a
performance of 100%, based on periodic evaluations.

However, training the agent for each and every state in τ can be time-
consuming and reduce sample efficiency, especially if the replay trajectory
is very dense (which is often the case with trajectories that are produced
by Ex). A simple optimization consists in adding a pretesting step before
training begins. If the policy already achieves 100% success with the new
starting point before the training begins, then training is skipped altogether.
This optimization is presented in Fig. 5.1(b).

5.4 Experimental Setup

Our experiments are conducted in maze environments of various sizes. A
maze of size N is described using the following Markov Decision Process

69

(MDP) with no terminal states:

S = [0, N]× [0, N]

A = [−0.1, 0.1]× [−0.1, 0.1]

step(s, a) =

{
s if [s, s+ a] intersects a wall

s+ a otherwise.

R(s, a, s′) = 1‖s′−target‖<0.2

Many mazes of size 3 are trivial, therefore we always used a hard “S”-
shape 3× 3 maze to lower the variance of the results. Mazes of size 2 are all
equivalent, and mazes of size 4 were generated independently for each test
using a depth-first recursive backtracker maze generation algorithm [Github,
2018a]. Walls have a thickness of 0.1, and examples of generated mazes can
be found on page 107.

The target position is (N − .5, N − .5) when N > 2. In mazes of size 2,
the target position is (.5, 1.5).

We used a standard DDPG implementation [OpenAI, 2018] with default
parameters. Each training session is limited to 50 episodes and an ε-greedy
noise process is applied during rollouts: for some 0 < ε < 1, with probability ε
the action is randomly sampled (and the actor is ignored), and with probability
1− ε no noise is used and the raw action is returned. In our tests, we used
ε = 0.1 (the benefits of ε-greedy noise over other noise processes is discussed
in Section 6.2.2 on page 76).

5.5 Choice of discount factor γ

The discount factor γ is neither part of the environment nor the learning
algorithm, but defines the optimality criterion. It controls the decay that
is applied when evaluating the contributions of future rewards to a present
choice. In our experiments, we tested two values of γ, that are γ = 0.9 and
γ = 0.99.

DDPG uses a neural network Q in order to estimate the state-action
value function Qπ(s, a) of the current policy π. In the case of determinis-
tic environments, the state-action value function is recursively defined as
Qπ(s, a) = R(s, a, s′) + γQπ(s′, π(s′)), where s′ = step(s, a).

Discount factor γ too low: the policy becomes short-sighted. Reach-
ing a sparse reward of value 1 after n steps with no reward carries a discounted
value of γn. This implies that rewards that are reached only after many steps

70

have very little impact on the shape of Q. For instance, with γ = 0.9 and
n = 50, γn ≈ 0.05. This effectively reduces the magnitude of the training
signal used by the actor update of DDPG, reducing the speed of actor updates
the farther from the reward.

With this consideration, it seems that choosing γ very close to 1 solves
the problem of exponential decay of the training signal. However, high γ
values present their own challenges.

Discount factor γ too high: over-estimations of Q become slow to
correct. The state-action critic approximator Q used by DDPG is trained
on (s, a, r, s′) tuples stored in an experience replay buffer, but as with any
continuous approximator, it generalizes the training data to nearby (s, a)
couples. In environments with positive rewards, Q can over-estimate the
value of states: for instance in maze environments, the learned value can be
generalized incorrectly and “leak” through walls. This mechanism is usually
counter-balanced by the fact that over-estimated Q(s, a) values can then be
lowered. For instance, in our maze environments, hitting a wall generates a
training tuple with s′ = s and r = 0. The update rule of DDPG applied to
this tuple when the current policy is to go towards the wall (π(s′) = π(s) = a)
yields: Q(s, a) ← Q(s, a)(1 + c(γ − 1)) where c is the critic learning rate.
Therefore, the closer γ is to 1, the slower over-estimated values will be
corrected towards their actual value under the current policy which is 0.

In smaller mazes, our experiments show that reducing γ increases the
performance of PB but not DDPG (Fig. 5.2). Since γ controls the rate at
which the reward signal decays with distance, in small maze environments
where the number of steps required to reach the reward is small, lower γ values
give a better gradient in the range of relevant time horizons. Furthermore,
as seen earlier this may allow for better correction of over-estimated critic
values.

5.6 Results on 2D mazes and analysis

Figure 5.3 shows the performance of PB and vanilla DDPG on various 2D
mazes. Both algorithms were run on the same mazes with different random
seeds, and a run was considered successful if the RL algorithm was able to
produce a policy reaching the target area from the environment reset point at
least once, within a limit of 1M environment interactions. The environment
interactions required by PB during the exploration phase are included in this
count.

71

0.7 0.9 0.99 0.999
Reward discount rate gamma

0

20

40

60

80

100

%
 su

cc
es

s b
ef

or
e

10
0k

 in
te

ra
ct

io
ns

DDPG
PB

Figure 5.2: Success rate of DDPG and PB on 2× 2 mazes depending on γ.
Error bars are computed using Wilson score intervals [Wilson, 1927]. From
left to right, N = 117, 106, 108, 93, 183, 169, 69, 93.

2x2 maze 3x3 maze 4x4 maze
0

20

40

60

80

100

%
 su

cc
es

s b
ef

or
e

10
0k

 in
te

ra
ct

io
ns Vanilla DDPG

PB

Figure 5.3: Success rate of PB on 2D mazes, when compared to DDPG.
Error bars are computed using Wilson error intervals. From left to right,
N = 183, 169, 185, 168, 101, 101.

72

Figure 5.4: Example run of vanilla DDPG on a 2x2 maze for 100k steps. The
sparse reward, which was placed in the top-left hand corner, was not found.

Figures 5.3 and 5.4 show that the exploration pattern of DDPG is often
unable to find sparse rewards even in the simplest environments, as discussed
in the introduction.

The results presented in Fig. 5.3 show that in small mazes, using Backplay
drastically increases the performance of DDPG.

Motion plan-
ning data is
hard to use

Backplay

Backplay can be used to exploit the connectivity data collected by a MP
algorithm through the extraction of a single rewarded trajectory, and
train a RL agent to solve environments that are too hard to explore for
RL alone

However, we can observe that:

• Even in very simple environments such as 2 × 2 mazes, PB regularly
fails.

• The relative advantage of PB disappears in more complex mazes, hinting
that other factors may be at play.

In the following chapter, we explore a fundamental problem with the
DDPG algorithm that affects both DDPG and PB.

73

6
The problem of deterministic policy gradients

in deterministic environments with sparse
rewards

In the previous chapter, testing backtracking on simple maze environments
revealed an unexpected problem in the Reinforcement Learning (RL) phase
of the Plan, Backplay (PB) algorithm: even in ideal conditions with the
environment difficulty being slowly increased, Deep Deterministic Policy
Gradient (DDPG) regularly fails to train a policy on 2× 2 mazes.

In this chapter, we simplify this problem to a 1D environment with the
starting point only one step away from the reward, meaning that a single
well-chosen action is enough to find the reward. Of course, without a heuristic
and without any reward gradient, finding such an action can still be hard
in the general case although in 1D we could still expect DDPG to succeed
reliably. In order to maximize the chances of success, an ε-greedy noise process
is applied during rollouts, with ε = 0.1, and the environment is reset often.
With these settings, we observe that the reward is indeed found by rollouts
but, surprisingly, the RL algorithm still fails to train an actor to follow this
very simple policy.

In Section 6.2, we isolate this problem and show that in this environment,
there exists a deadlock cycle that blocks training if the reward is found
very quickly. In Section 6.4, we generalize this deadlock to all deterministic
environments with continuous actions and sparse rewards. In Section 6.6, we
propose variations of the DDPG algorithm that are immune to this specific
problem.

This chapter requires a good understanding of DDPG, therefore reading
the overview of DDPG presented in Section 1.2.5 is recommended. The target
networks of DDPG are mostly useful to stabilize function approximation

74

when learning the critic and actor networks. Since we are mostly interested in
convergence phenomena, we ignore them in most of the discussions presented
in this chapter. However, all our tests are still conducted with these target
networks.

6.1 Related work

Issues when combining RL with function approximation have been studied for
a long time [Baird and Klopf, 1993; Boyan and Moore, 1995; Tsitsiklis and
Van Roy, 1997]. In particular, it is well known that deep RL algorithms can
diverge when they meet three conditions coined as the “deadly triad” [Sutton
and Barto, 2018b], that is when they use (1) function approximation, (2)
bootstrapping updates and (3) off-policy learning. However, these questions
are mostly studied in the continuous state, discrete action case. For instance,
several recent papers have studied the mechanism of this instability using Deep
Q-Network (DQN) [Mnih et al., 2013]. In this context, four failure modes have
been identified from a theoretical point of view by considering the effect of a
linear approximation of the DQN updates and by identifying conditions under
which the approximate updates of the critic represent contraction mappings
for some distance over Q-functions [Achiam et al., 2019]. Meanwhile, van
Hasselt et al. [2018] show that, due to its stabilizing heuristics, DQN does
not diverge much in practice when applied to the Atari domain.

In contrast to these papers, here we study a failure mode specific to
continuous action actor-critic algorithms. It hinges on the fact that one
cannot take the maximum over actions, and must rely on the actor as a proxy
for providing the optimal action instead. Therefore, the failure mode identified
in this chapter cannot be reduced to any of the ones that affect DQN. Besides,
the theoretical derivations provided in the appendices show that the failure
mode we are investigating does not depend on function approximation errors,
thus it cannot be directly related to the deadly triad.

More related to our work, several papers have studied failure to gather
rewarded experience from the environment due to poor exploration [Colas
et al., 2018; Fortunato et al., 2017; Plappert et al., 2017], but we go beyond
this issue by studying a case where the reward is actually found but not
properly exploited. Finally, like us, Fujimoto et al. [2018a] study a failure
mode which is specific to DDPG-like algorithms, but the studied failure mode
is different. They show under a batch learning regime that DDPG suffers from
an extrapolation error phenomenon, whereas we are in the more standard
incremental learning setting and focus on a deadlock resulting from the shape
of the Q-function in the sparse reward case.

75

6.2 A new failure mode

In this section, we introduce a simple 1D environment called 1D-toy. We
then show that despite its simplicity DDPG occasionally fails to solve the
1D-toy environment. We then show that these failures occur when the
reward is not found early enough causing the learning process to get stuck.
Besides, we show that the initial actor can be significantly modified in the
initial stages before finding the first reward. We explain how the combination
of these phenomena can result into a deadlock situation on 1D-toy.

6.2.1 The 1D-Toy environment

In this section, we introduce a simplistic environment which we call 1D-toy.
It is a one-dimensional, discrete-time, continuous state and action problem,
depicted in Fig. 6.1.

S = [0, 1] (6.1a)

A = [−0.1, 0.1] (6.1b)

s0 = 0 (6.1c)

st+1 = min (1,max (0, st + at))
(6.1d)

rt = termt = 1st+at<0 (6.1e)

Figure 6.1: The 1D-toy environment

Appendix Section A.4 studies a few properties of 1D-toy. Finding
analytical solutions for this discrete-time continuous-state and action Markov
Decision Process (MDP) is an interesting brain teaser, but we do not use any
of these findings in this chapter.

6.2.2 Residual failure to converge using different noise
processes.

We start by running DDPG on the 1D-toy environment. This environment
is trivial as one infinitesimal step to the left is enough to obtain the reward,
end the episode and succeed, thus we might expect a quick 100% success. The
behavior of the agent during training is driven by the current policy trained
by DDPG to which a noise process is applied to introduce stochasticity in the

76

0 20k 40k 60k 80k 100k

Simulation steps

85

90

95

100

%
o
f

su
cc

es
sf

u
l

ru
n
s

Probabilistic noise

OU noise

(a) Success rate of DDPG with OU
and ε-greedy noise. Even with ε-
greedy noise, DDPG fails on about
1% of the seeds.

0 20k 40k 60k 80k 100k

Simulation steps

92

94

96

98

100

%
o
f

su
cc

es
sf

u
l

ru
n
s

Baseline

Switch to π∗ after 20k steps

(b) Comparison between DDPG with
ε-greedy noise and a variant in which
the behavior policy is set to the opti-
mal policy π∗ after 20k steps.

Figure 6.2: Success rate of variants of DDPG on 1D-toy over learning steps,
averaged over 10k seeds.

collected data. The first attempt using an Ornstein-Uhlenbeck (OU) noise
process shows that DDPG succeeds in only 94% of cases, see Fig. 6.2(a).

These failures might come from an exploration problem. Indeed, at the
start of each episode the OU noise process is reset to zero and gives little
noise in the first steps of the episode. In order to remove this potential
source of failure, we replace the OU noise process with an ε-greedy strategy
(also called probabilistic noise). For some 0 < ε < 1, with probability ε, the
action is randomly sampled (and the actor is ignored), and with probability
1− ε no noise is used and the raw action is returned. In our tests, we used
ε = 0.1. This guarantees at least a 5% chance of success at the first step of
each episode, for any policy. Nevertheless, Fig. 6.2(a) shows that even with
ε-greedy noise, about 1% of seeds still fail to converge to a successful policy in
1D-toy, even after 100k training steps. All the following tests are performed
using ε-greedy noise.

We now focus on these failures. On all failing seeds, we observe that
the actor has converged to a saturated policy that always goes to the right
(∀s, π(s) = 0.1). However, some mini-batch samples have non-zero rewards
because the agent still occasionally moves to the left, due to the ε-greedy
noise applied during rollouts. The expected fraction of non-zero rewards is
slightly more than 0.1%1. Figure 6.3(a) shows the occurrence of rewards in
mini-batches taken from the replay buffer when training DDPG on 1D-toy.

110% of steps are governed by ε-greedy noise, of which at least 2% are the first episode
step, of which 50% are steps going to the left and leading to the reward.

77

After each rollout (episode) of n steps, the critic and actor networks are
trained n times on mini-batches of size 100. So for instance, a failed episode
of size 50 is followed by a training on a total of 5000 samples, out of which
we expect more than 5 in average are rewarded transitions.

The constant presence of rewarded transitions in the mini-batches suggests
that the failures of DDPG on this environment are not due to insufficient
exploration by the behavior policy.

0 25k 50k 75k 100k
Steps

0

5

10

15

Re
wa

rd
 sa

m
pl

es
 u

se
d

in
 tr

ai
ni

ng

(a)

 0%

 5%

10%

15%

%
 o

f f
ai

le
d

ru
ns

 a
fte

r 1
00

k
st

ep
s

102 103

Step of earliest reward found

10 5

10 4

10 3

10 2

No
rm

al
ize

d
oc

cu
rre

nc
e

ra
te

(b)

Figure 6.3: (a) Number of rewards found in mini-batches during training.
After a rollout of n steps, the actor and critic are both trained on n mini-
batches of size 100. The red dotted line indicates an average of 6.03 rewarded
transitions present in these n mini-batches. (b) In red, normalized probability
of finding the earliest reward at this step. In blue, for each earliest reward
bin, fraction of these episodes that fail to converge to a good actor after 100k
steps. Note that when the reward is found after one or two episodes, the
convergence to a successful actor is certain.

6.3 Correlation between finding the reward

early and finding the optimal policy.

We have shown that DDPG can get stuck in 1D-toy despite finding the
reward regularly. Now we show that when DDPG finds the reward early in
the training session, it is also more successful in converging to the optimal
policy. On the other hand, when the first reward is found late, the learning
process more often gets stuck with a sub-optimal policy.

78

From Fig. 6.3(b), the early steps appear to have a high impact on the
outcome of training. For instance, if the reward is found in the first 50 steps
by the actor noise (which happens in 63% of cases), then the success rate of
DDPG is 100%. However, if the reward is first found after more than 50 steps,
then the success rate drops to 96%. Figure 6.3(b) shows that finding the
reward later results in lower success rates, down to 87% for runs in which the
reward was not found in the first 1600 steps. Therefore, we claim that there
exists a critical time frame for finding the reward in the very early stages of
training.

6.3.1 Spontaneous actor drift

At the beginning of each training session, the actor and critic of DDPG
are initialized to represent respectively close-to-zero state-action values and
close-to-zero actions. Besides, as long as the agent does not find a reward, it
does not benefit from any utility gradient. Thus we might expect that the
actor and critic remain constant until the first reward is found. Actually, we
show that even in the absence of reward, training the actor and critic triggers
non-negligible updates that cause the actor to reach a saturated state very
quickly.

To investigate this, we use a variant of 1D-toy called Drift where the
only difference is that no rewarded or terminal transitions are present in
the environment. We also use a stripped-down version of DDPG, removing
rollouts and using random sampling of states and actions as mini-batches for
training.

0 50 100 150 200

Step

0.00

0.05

0.10

m
ax
|Q
|

(a)

0 50 100 150 200

Step

0.00

0.05

0.10

m
a
x
|π
|

(b)

Figure 6.4: Drift of (a) max |Q| and (b) max |π| in the Drift environment,
for 10 different seeds. In the absence of reward, the critic oscillates briefly
before stabilizing. However, the actor very quickly reaches a saturated state,
at either ∀s, π(s) = 0.1 or −0.1.

Figure 6.4(b) shows that even in the absence of reward, the actor function

79

(a) Critic values in the deadlock con-
figuration. The critic is non-zero only
in the region that immediately leads
to a reward (s+ a < 0)

(b) Two snapshots of the critic for
different states in a failed run. The
high Q values in the s+ a < 0 region
are not propagated.

Figure 6.5: Visualization of the critic in a failing run, in which the actor is
stuck to ∀s, π(s) = 0.1.

drifts rapidly (notice the horizontal scale in steps) to a saturated policy, in
a number of steps comparable to the “critical time frame” identified above.
The critic also has a transitive phase before stabilizing.

In Fig. 6.4(a), the fact that maxs,a |Q(s, a)| can increase in the absence
of reward can seem counter-intuitive, since in the loss function presented in
Eq. (1.2), |yi| can never be greater than maxs,a |Q(s, a)|. However, it should
be noted that the changes made to Q are not local to the mini-batch points,
and increasing the value of Q for one input (s, a) may cause its value to
increase for other inputs too, which may cause an increase in the global
maximum of Q. This phenomenon is at the heart of the over-estimation bias
when learning a critic [Fujimoto et al., 2018b], but this bias does not play a
key role here.

6.3.2 Explaining the deadlock situation for DDPG on
1D-Toy

Up to now, we have shown that DDPG fails about 1% of times on 1D-
toy, despite the simplicity of this environment. We have now collected the
necessary elements to explain the mechanisms of this deadlock in 1D-toy.

Figure 6.5 shows the value of the critic in a failed run of DDPG on 1D-toy.
We see that the value of the reward is not propagated correctly outside the
region in which the reward is found in a single step {(s, a) | s+ a < 0}. The
key of the deadlock is that once the actor has drifted to ∀s, π(s) = 0.1, it
is updated according to ∇aQθ(s, a)|a=πψ(s) (Eq. (1.5)). Figure 6.5(b) shows

that for a = π(s) = 0.1, this gradient is zero therefore the actor is not
updated. Besides, the critic is updated using yi = r(si, ai) + γQ(s′i, π(s′i))
as a target. Since Q(s′i, 0.1) is zero, the critic only needs to be non-zero for
directly rewarded actions, and for all other samples the target value remains

80

{
∀s, π(s) ≈ 0

∀(s, a)Q(s, a) ≈ 0
∀s, π(s) = 0.1

π does not change∀s, ∇aQ(s, a)|a=π(s) = 0

Q(s, a) converges to

{
1 if s+ a < 0

0 otherwise

init. drift

Figure 6.6: Deadlock observed in 1D-toy, represented as the cycle of red
arrows.

zero. In this state, the critic loss given in Eq. (1.2) is minimal, so there is no
further update of the critic and no further propagation of the state-action
values. The combination of the above two facts clearly results in a deadlock.

Importantly, the constitutive elements of this deadlock do not depend on
the batches used to perform the update, and therefore do not depend on the
experience selection method. We tested this experimentally by substituting
the behavior policy for the optimal policy after 20k training steps. Results are
presented in Fig. 6.2(b) and show that, once stuck, even when it is given ideal
samples, DDPG stays stuck in the deadlock configuration. This also explains
why finding the reward early results in better performance. When the reward
is found early enough, π(s0) has not drifted too far, and the gradient of
Q(s0, a) at a = π(s0) drives the actor back into the correct direction.

Note however that even when the actor drifts to the right, DDPG does
not always fail. Indeed, because of the function approximation the shape of
the critic when finding the reward for the first time varies, and sometimes
converges slowly enough for the actor to be updated before the convergence
of the critic.

Figure 6.6 summarizes the above process. The entry point is represented
using a green dot. First, the actor drifts to ∀s, π(s) = 0.1, then the critic
converges to Qπ which is a piecewise-constant function (Experiment in Fig. 6.5,
proof in Theorem 1 in Section 6.3.3), which in turn means that the critic
provides no gradient, therefore the actor is not updated (as seen in Eq. (1.5),
more details in Theorem 2) 2.

2Note that Fig. 6.5 shows a critic state which is slightly different from the one presented
in Fig. 6.6, due to the limitations of function approximators.

81

6.3.3 Formal proof of the existence of a deadlock in
1D-Toy

In this section, we prove that there exists a state of DDPG that is a deadlock
in the 1D-toy environment. This proof directly references Fig. 6.6. Let us
define two functions Q and πψ such that:

∀(s, a), Q(s, a) = 1s+a<0 and (6.2)

∀s ∈ S, πψ(s) = 0.1 . (6.3)

From now on, we will use notation π := πψ.

Theorem 1. (Q,πψ) is a fixed point for the critic update.

Proof. The critic update is governed by Eq. (1.2).
Let (si, ai, ri, ti, s

′
i) be a sample from the replay buffer. The environment

dictates that ri = ti = 1si+ai<0.
The critic update yields

yi = ri + γ(1− ti)Q (s′i, πψ(s′i))

yi = ri + γ(1− ti)Q (s′i, 0.1) by Eq. (6.3)

yi = ri by Eq. (6.2)

yi = 1si+ai<0

yi = Q(si, ai) by Eq. (6.2)

and therefore, for each sample yi = Q(si, ai), and L is null and minimal.
Therefore θ will not be updated during the critic update.

Theorem 2. (Q,πψ) is a fixed point for the actor update.

Proof. The actor update is governed by Eq. (1.5).
Let {(si, ai, ri, ti, s′i)} be a set of samples from the replay buffer. The

environment dictates that ∀i, ri = ti = 1si+ai<0.

ψ ← ψ + α
∑

i

∂πψ(si)

∂ψ

T

∇aQ(si, a)|a=πψ(si)

Since Q(si, a) = 1si+a<0, ∇aQ(si, a) = 0, so ψ will not be updated during
the actor update.

In this section, we assume that Q is any function, however in imple-
mentations Q is often a parametric neural network Qθ, which cannot be
discontinuous. Effects of this approximation are discussed in Section 6.5.

82

y =r(s, a)

+ γQ (s′, π (s′))

sparse reward =⇒
Qπ is piecewise-constant

Deterministic policy
gradient update

Init: reward not found

π drifts to a poor policy

π barely changes

Q tends towards QπQ ≈ piecewise-constant

∇ Q (s, a)|π(s) ≈ 0

Figure 6.7: A cyclic view of the undesirable convergence process in continuous
action actor-critic algorithms, in the deterministic and sparse reward case.

6.4 Generalization to all deterministic Policy

Gradient algorithms in deterministic en-

vironments with sparse rewards

Our study of 1D-toy revealed how DDPG can get stuck in this simplistic
environment. We now generalize to the broader context of more general
continuous action actor critic algorithms, including at least DDPG and Twin
Delayed DDPG (TD3), and acting in any deterministic and sparse reward
environment. The generalized deadlock mechanism is illustrated in Fig. 6.7
and explained hereafter in the idealized context of perfect approximators.

Entry point: As shown in Section 6.3.1, before the behavior policy finds any
reward, training the actor and critic can still trigger non-negligible updates
that may cause the actor to quickly reach a poor state and stabilize. This
defines our entry point in the process.

Q tends towards Qπ: A first step into the cycle is that, if the critic
is updated faster than the policy, the update rule of the critic Q given in
Equation Eq. (1.2) makes Q converge to Qπ. This is presented in detail in
Section 6.4.1.

83

Qπ is piecewise-constant: In Section 6.4.2, we then show that, in a
deterministic environment with sparse terminal rewards, Qπ is piecewise-
constant because V π(s′) only depends on two things: the (integer) number of
steps required to reach a rewarded state from s′, and the value of this reward
state, which is itself piecewise-constant. Note that we can reach the same
conclusion with non-terminal rewards, by making the stronger hypothesis
on the actor that ∀s, r(s, π(s)) = 0. Notably, this is the case for the actor
∀s, π(s) = 0.1 on 1D-toy.

Q is approximately piecewise-constant and ∇aQ(s, a)|a=π(s) ≈ 0: Quite
obviously, from Qπ is piecewise-constant and Q tends towards Qπ, we can infer
that Q progressively becomes almost piecewise-constant as the cyclic process
unfolds. Actually, the Q function is estimated by a function approximator
which is never truly discontinuous. The impact of this fact is studied in
Section 6.5. However, we can expect Q to have mostly flat gradients since
it is trained to match a piecewise-constant function. We can thus infer that,
globally, ∇aQ(s, a)|a=π(s) ≈ 0. And critically, the gradients in the flat regions
far from the discontinuities give little information on how to reach regions of
higher values.

π barely changes: DDPG uses the deterministic policy gradient update,
as seen in Eq. (6.4). This is an analytical gradient that does not incorporate
any stochasticity, because Q is always differentiated exactly at (s, π(s)). Thus
the actor update is stalled, even when the reward is regularly found by the
behavior policy. This closes the loop of our process.

ψ ← ψ + αa

∑

i

∂πψ(si)

∂ψ

T

∇aQθ(si, a)|a=πψ(si) . (6.4)

6.4.1 Proof of convergence of the critic to Qπ

Notation For a state-action pair s, a, we define s1 as the result of applying
action a at state s in the deterministic environment. For a given policy π, we
define a1 as π(s1). Recursively, for any i ≥ 1, we define si+1 as the result of
applying action ai to state si, and ai as π(si).

Definition 1. Let (s, a) ∈ S × A. If (s, a) is terminal, then we set N = 0.
Otherwise, we set N to the number of subsequent transitions with policy π to
reach a terminal state. Therefore, the transition (sN , aN) is always terminal.
We generalize by setting N =∞ when no terminal transition is ever reached.

We define the state-action value function of policy π as:

84

Qπ(s, a) := r(s, a) +
N∑

i=1

γir(si, ai)

Note that when N = ∞, the sum converges under the hypothesis that
rewards are bounded and γ < 1.

If π is fixed, Q is updated regularly via approximate dynamic programming
with the Bellman operator for the policy π. Under strong assumptions, or
assuming exact dynamic programming, it is possible to prove [Geist and
Pietquin, 2011] that the iterated application of this operator converges towards
a unique function Qπ, which corresponds to the state-action value function of
π as defined above. It is usually done by proving that the Bellman operator
is a contraction mapping, and also applies in deterministic cases.

However, when using approximators such as neural nets, no theoretical
results of convergence exists, to the best of our knowledge. In this chapter
we assume that this convergence is true, and in the experimental results we
did not observe any failures to converge towards Qπ. On the contrary, we
observe that this convergence occurs, and can be what starts the deadlock
cycle studied in Section 6.4.

6.4.2 Proof that Qπ is piecewise-constant

In this section, we show that in deterministic environments with terminal
sparse rewards (that is, the only transitions with non-zero reward are also
terminal), Qπ is piecewise-constant.

Definition 2. In this chapter, for I ⊂ Rn, we say a function f : I → R is
piecewise-constant if ∀x0 ∈ I, either ∇f(x0) = 0, or f has no gradient at x0.

Theorem 3. In a deterministic environment with terminal sparse rewards,
for any π, Qπ is piecewise-constant.

Proof. Note that this proof can be trivialized by assuming that around any
point where the gradient is defined, there exists a neighborhood in which the
function is continuous. In this case, the intermediate value theorem yields
an uncountable set of values of the function in this neighborhood, which
contradicts the countable number of possible discounted rewards.

The crux of the following proof is that even when no such neighborhood
exists, the gradient is either null of non-existent. This behavior is shown in
Fig. 6.8.

85

−1.0 −0.5 0.0 0.5 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
f

x=y

Figure 6.8: Example of a non-continuous function f with values in{
±
(
1
2

)n | n ∈ N
}

, approximating the identity function. However, this func-
tion is not differentiable even at x = 0 because the difference quotient does
not converge but instead oscillates between two values.

Using the notations of Definition 1 and the theorem hypothesis that
rewarded transitions are also terminal, we can write Qπ(s, a) as Qπ(s, a) =



r(s, a) if N = 0

γNr(sN , aN) if N is finite

0 otherwise.

.

We promote N to a function S×A→ N∪{+∞}, and we define a function

u : S × A→ R as u(s, a) =





r(s, a) if N = 0

r
(
sN(s,a), aN(s,a)

)
if N > 0 finite

0 otherwise.

.

Now we have ∀(s, a) ∈ S × A,Qπ(s, a) = γN(s,a)u(s, a).
Let R be the finite set of possible reward values.
Therefore values of Qπ are in a set M = {γnr | n ∈ N, r ∈ R}. Let M+ =

M ∩ R+∗ be the set of positive values of M . Since R ⊂ R is finite, we order
all non-zero positive possible rewards in increasing order r1, r2, · · · r|R|.

Let M+
k = {γnr | n ∈ N, r ∈ Rk} where Rk = {r1, · · · , rk}.

We prove the following by induction over the number of possible non-zero
rewards:

H(k) : ∃νk > 0,∀δ > 0,∃ consecutive b, a ∈M+
k , δνk < a− b and b < a < δ

86

Initialization When k = 1, M+ = {r1γn | n ∈ N}. Let ν1 = γ(1−γ)
2

, let
δ > 0. Let n = blogγ

δ
r1
c+ 1. We have:

logγ
δ

r1
− 1 < n− 1 ≤ logγ

δ

r1

logγ
δ

r1
< n ≤ 1 + logγ

δ

r1

γ
δ

r1
≤ γn <

δ

r1
δγ(1− γ) ≤ γnr1(1− γ) < δ(1− γ)

δν1 < γnr1(1− γ) < δ(1− γ)

δν1 < r1γ
n − r1γn+1 and r1γ

n < δ

Let a = r1γ
n ∈ M+ and b = r1γ

n+1 ∈ M+. δν1 < a − b and b < a < δ
therefore H(1) is verified.

Induction Let k ≥ 1, and assume H(k) is true. Let νk be the ν chosen for
H(k). Let νk+1 = νk

2
. Let δ > 0. Let bk, ak a consecutive pair chosen in M+

k

such that δνk < ak − bk and bk < ak < δ.
Since Rk+1 contains only one more element than Rk, which is larger than

all elements in Rk, we know that there is either one or zero elements c ∈M+
k+1

that are strictly between ak and bk. If ak − c < c− bk then let ak+1 = c and
bk+1 = bk, otherwise ak+1 = ak and bk+1 = c. If ak and bk are still consecutive
in M+

k+1, then ak+1 = ak and bk+1 = bk.
This guarantees that [bk+1, ak+1] as at least half as big as [bk, ak]. Therefore,

1
2
(ak − bk) < ak+1 − bk+1, which means that δνk+1 < ak+1 − bk+1 and bk <
ak < δ.

Therefore H(k + 1) is verified.

This also gives the general expression of ν, valid for all k: ν = γ(1−γ)
2|R|+1 .

Main proof Using the result above, we prove that Qπ(s, a) cannot have
any non-null derivatives.

Trivially, Qπ cannot have a non-null derivative at a point (s, a) where
Qπ(s, a) = q0 6= 0. Indeed, there exists a neighborhood of q0 ∈ M in which
there is a single value.

Let x0 = (s, a) such that Q(s, a) = 0. Let v be a vector of the space S×A.
Let f : R→ R be defined as f(h) = Qπ(x0 + hv). In the following, we show

that f(h)
|h| cannot converge to a non-null value when h→ 0.

87

We use the (ε, δ) definition of a limit. If f had a non-null derivative l at

0, we would have ∀ε > 0,∃δ > 0,∀h, |h| < δ =⇒
∣∣∣f(h)|h| − l

∣∣∣ < ε.

Instead, we will show the opposite: ∃ε > 0, ∀δ > 0,∃h, |h| < δ and
∣∣∣f(h)|h| − l

∣∣∣ ≥
ε.

Using the candidate derivative l and the ν value computed above that
only depends on γ and |R|, we set ε = lν

2
.

Let δ > 0.
There exists consecutive b, a in M such that δlν ≤ a− b and b < a < δl.
We set h = a+b

2l
. Note that a+b

2
< δl therefore h < δ.

f(h) is in M , but hl is the center of the segment [b, a] of consecutive points
of M . Therefore, the distance between f(h) and hl is at least a−b

2
.

|f(h)− hl| ≥ a− b
2
≥ δlν

2

Since h < δ, 1
h
> δ.

∣∣∣∣
f(h)

h
− l
∣∣∣∣ ≥

lν

2
= ε.

6.4.3 Consequences of the convergence cycle

As illustrated with the red arrows in Fig. 6.7, the more loops performed in
the convergence process, the more the critic tends to be piecewise-constant
and the less the actor tends to change. Importantly, this cyclic convergence
process is triggered as soon as the changes on the policy drastically slow
down or stop. What matters for the final performance is the quality of the
policy reached before this convergence loop is triggered. Quite obviously, if
the loop is triggered before the policy gets consistently rewarded, the final
performance is deemed to be poor.

The key of this undesirable convergence cycle lies in the use of the de-
terministic policy gradient update given in Eq. (6.4). Actually, rewarded
samples found by the exploratory behavior policy β tend to be ignored by
the conjunction of two reasons. First, the critic is updated using Q(s′, π(s′))
and not Q(s, β(s)), thus if π differs too much from β, the values brought by
β are not properly propagated. Second, the actor being updated through
Eq. (6.4), i.e. using the analytical gradient of the critic with respect to the
actions of π, there is no room for considering other actions than that of π.
Besides, the actor update involves only the state s of the sample taken from
the replay buffer, and not the reward found from this sample r(s, a) or the

88

Qπ

Q

(a) (b)

Figure 6.9: (a) Example of a monotonous function approximator. (b) Simply
changing the vertical scale of the graphs presented in Fig. 6.5(b) reveals that
the function approximator is not perfectly flat, and has many unwanted local
extrema. Specifically, continuously moving from π(0) = 0.1 to π(0) < 0
requires crossing a significant valley in Q(0, a), while π(0) = 0.1 is a strong
local maximum.

action performed. For each sampled state s, the actor update is intended to
make π(s) converge to argmaxa π(s, a) but the experience of different actions
performed for identical or similar states is only available through Q(s, ·), and
in DDPG it is only exploited through the gradient of Q(s, ·) at π(s), so the
process can easily get stuck in an area with null gradient, especially if the
critic tends towards a piecewise-constant function, which as we have shown
happens when the reward is sparse. Besides, since TD3 also updates the actor
according to Eq. (6.4), it is susceptible to the same failures as DDPG. More
generally, any algorithm that attempts to update a deterministic policy using
its gradient computed based on a critic is affected by this cycle.

6.5 Impact of function approximation

We have just explained that when the actor has drifted to an incorrect policy
before finding the reward, an undesirable convergence process should result
in DDPG getting stuck to this policy. However, in 1D-toy, we measured
that the actor drifts to a policy moving to the right in 50% of cases, but the
learning process only fails 1% of times. More generally, despite the issues
discussed in this chapter, DDPG has been shown to be efficient in many
problems. This better-than-predicted success can be attributed to the impact
of function approximation.

Figure 6.9(a) shows a case in which the critic approximates Qπ while
keeping a monotonous slope between the current policy value and the reward.

89

In this case, the actor is correctly updated towards the reward (if it is close
enough to the discontinuity). This is the most often observed case, and
naturally we expect approximators to smooth out discontinuities in target
functions in a monotonous way, which facilitates gradient ascent. However,
the critic is updated not only in state-action pairs where Qπ(s, a) is positive,
but also at points where Qπ(s, a) = 0, which means that the bottom part of
the curve also tends to flatten. As this happens, we can imagine phenomena
that are common when trying to approximate discontinuous functions, such
as the overshoot observed in Fig. 6.9(b). In this case, the gradient prevents
the actor from improving.

6.6 Potential solutions

In Section 6.4, we have shown that actor-critic algorithms such as DDPG
and TD3 could not recover from early convergence to a poor policy due to
the combination of three factors whose dependence is highlighted in Fig. 6.7:
the use of the deterministic policy gradient update, the use of Q(s′, π(s′)) in
the critic update, and the attempt to address sparse reward in deterministic
environments.

The main purpose of this chapter is to clearly identify the specific problem
that leads to failures when using DDPG with deterministic environments and
sparse rewards, and we leave a thorough investigation of potential solutions as
future work. Nevertheless, in this section we categorize existing or potential
solutions to the issue in terms of which of the above factor they remove.

6.6.1 Avoiding sparse rewards

Transforming a sparse reward problem into a dense one can solve the above is-
sue as the critic should not converge to a piecewise-constant function anymore.
This can be achieved for instance by using various forms of shaping [Konidaris
and Barto, 2006] or by adding auxiliary tasks [Jaderberg et al., 2016; Ried-
miller et al., 2018]. We do not further investigate these solutions here, as
they are mainly problem-dependent and may introduce bias when the reward
transformation results in deceptive gradient or modifies the corresponding
optimal policy.

6.6.2 Replacing the policy-based critic update

As explained above, if some transition (s, a, s′) leading to a reward is found
in the replay buffer, the critic update corresponding to this transition uses

90

0 20k 40k 60k 80k 100k

Simulation steps

88

90

92

95

98

100

%
o
f

su
cc

es
sf

u
l

ru
n
s Probabilistic noise

OU noise

(a)

0 100 200 300 400 500

Simulation steps

0

20

40

60

80

100

%
of

su
cc

es
sf

u
l

ru
n

s

SAC (stable-baselines)

(b)

0 200k 400k 600k 800k 1M

Simulation steps

0

500

1000

1500

2000

A
v
er

a
g
e

ep
is

o
d
e

re
tu

rn DDPGargmax

DDPG

(c)

Figure 6.10: (a) Applying DDPG-argmax to 1D-toy. (b) Applying Soft
Actor-Critic (SAC) to 1D-toy. In both cases, the success rate reaches
100% quickly (notice the horizontal scale for SAC). (c) Applying DDPG
and DDPG-argmax to a sparse-reward variant of the HalfCheetah-v2
environment. Details on the changes made to and HalfCheetah-v2 are
available in Section 6.7.

91

Q(s′, π(s′)), therefore not propagating the next state value that the behavior
policy may have found. Of course, when using the gradient from the critic,
the actor update should tend to update π to reflect the better policy such
that π(s′)→ a′, but the critic does not always provide an adequate gradient
as shown before.

If performing a maximum over a continuous action space was possible,
using maxaQ(s′, a) instead of Q(s′, π(s′)) would solve the issue. Several
works start from this insight. Some methods directly sample the action
space and look for such an approximate maximum [Kalashnikov et al., 2018;
Simmons-Edler et al., 2019]. To show that this approach can fix the above
issue, we applied it to the 1D-toy environment. We take a straightforward
implementation where the policy gradient update in DDPG is replaced by
sampling 100 different actions, finding the argmax over these actions of
Q(s, a), and regressing the actor towards the best action we found. We call
the resulting algorithm DDPG-argmax, and more details are available in
Section 6.6.2. Results are shown in Fig. 6.10(a), in which we see that the
success rate quickly reaches 100%.

Description of DDPG-argmax Instead of relying on the differentiation
of Qθ (si, πψ (si)) to update ψ in order to maximize Q(s, π(s)), we begin by
selecting a set of N potential actions (bj)0≤j<N . Then, we compute Qθ (si, bj)
for each sample si and each potential action bj, and for each sample si
we find the best potential action ci = bargmaxj Qθ(si,bj). Finally, we regress
πψ(si) towards the goal ci. This process is summarized by the following
optimization problem, in which Unif(A) stands for uniform sampling in A :



(bj)0≤j<N ∼ Unif(A)

ci = bargmaxj Qθ(si,bj)

minimize
∑

i

(πψ(si)− ci)2 w.r.t. ψ
.

Quite obviously, even if sampling can provide a good enough baseline
for simple enough benchmarks, these methods do not scale well to large
actions spaces. Many improvements to this can be imagined by changing the
way the action space is sampled, such as including π(s) in the samples, to
prevent picking a worse action than the one provided by the actor, sampling
preferentially around π(s), or around π(s + ε), or just using actions taken
from the replay buffer.

Interestingly, using a stochastic actor such as in the Soft Actor Critic (SAC)
algorithm [Haarnoja et al., 2018] can be considered as sampling preferentially
around π(s + ε) where ε is driven by the entropy regularization term. In

92

Fig. 6.10(b), we show that SAC also immediately solves 1D-toy.
Another approach relies on representing the critic as the V function

rather than the Q function. The same way π(s) tends to approximate
argmaxaQ(s, a), V tends to approximate maxaQ(s, a), and is updated when
finding a transition that raises the value of a state. Using V , performing a
maximum in the critic update is not necessary anymore. The prototypical
actor-critic algorithm using a model of V as a critic is Continuous Actor-Critic
Learning Automata (CACLA) [Van Hasselt and Wiering, 2007]. However,
approximating V with neural networks can prove more unstable than approx-
imating Q, as function approximation can be sensitive to the discontinuities
resulting form the implicit maximization over Q values.

6.6.3 Replacing the deterministic policy gradient up-
date

Instead of relying on the deterministic policy gradient update, one can rely
on a stochastic policy to perform a different actor update. This is the case
of SAC, as mentioned just above. Because SAC does not use Q(s′, π(s′)) in
its update rule, it does not suffer from the undesirable convergence process
described here.

Another solution consists in completely replacing the actor update mech-
anism, using regression to update π(s) towards any action better than the
current one. This could be achieved by updating the actor and the critic simul-
taneously: when sampling a higher-than-expected critic value yi > Q(si, ai),
one may update π(si) towards ai using:

Lψ =
∑

i

δyi>Q(si,π(si)) (π(si)− ai) . (6.5)

This is similar to the behavior of CACLA, as analyzed in [Zimmer and Weng,
2019].

6.7 Experiments on larger benchmarks

In order to test the relevance of using DDPG-argmax on larger benchmarks,
we constructed a sparse reward version of HalfCheetah-v2 [Github, 2018b].

HalfCheetah-v2 was modified by generating a step reward of 2 when the
x component of the speed of the cheetah is more than 2. We also removed the
control penalty. Since the maximum episode duration is 1000, the maximum
possible reward in this modified environment is 2000.

93

0 200k 400k 600k 800k 1M

Simulation steps

0

500

1000

1500

2000

A
v
er

a
g
e

ep
is

o
d

e
re

tu
rn

DDPGargmax

DDPG

Figure 6.11: Performance of DDPG and DDPG-argmax on a sparse variant of
HalfCheetah-v2. To ensure exploration of the state space is not a problem,
the policy is replaced with a good pre-trained policy for one episode every 20
episodes.

In both cases, the actor noise uses the default implementation of the
Spinup implementation of DDPG, which is an added uniform noise with an
amplitude of 0.1.

Running DDPG and DDPG-argmax on this environment yields the re-
sults shown in Fig. 6.10(c). Experiments on HalfCheetah-v2 have been
conducted using six different seeds, and the main curves are smoothed using
a moving average covering 10 episodes (10k steps), and the shaded area
represents the average plus or minus one standard deviation.

On HalfCheetah-v2, both DDPG and DDPG-argmax are able to find
rewards despite its sparsity. However, DDPG-argmax outperforms DDPG
in this environment. Since the only difference between these algorithms is
the actor update, we conclude that even in complex environments, the actor
update is the main weakness of DDPG. We have shown that replacing it with
a brute-force update improves performance dramatically, and further research
aiming to improve the performance of deterministic actor-critic algorithms in
environments with sparse rewards should concentrate on improving the actor
update rule.

Figure 6.10(c) shows that DDPG is able to find the reward without the
help of any exploration except the uniform noise built in the algorithm itself.
However, to prove that state-space exploration is not the issue here, we
constructed a variant in which the current actor is backed up and replaced
with a pre-trained good actor every 20 episodes. This variant achieves episode
returns above 1950 (as a reminder, the maximum episode return is 2000). In
the next episode, the backed up policy is restored. This guarantees that the

94

replay buffer always contains all the transitions necessary to learn a good
policy. We call this technique priming.

Results of this variant are presented in Fig. 6.11. Notice that DDPG
performs much better than without priming, but the performance of DDPG-
argmax is unchanged. However, DDPG still fails to completely solve the
environment, proving that even when state-space exploration is made trivial,
DDPG underperforms on sparse-reward environments due to its poor actor
update.

However, with higher-dimensional and more complex environments, the
analysis becomes more difficult and other failure modes such as the ones
related to the deadly triad, the extrapolation error or the over-estimation
bias might come into play, so it becomes harder to quantitatively analyze
the impact of the phenomenon we are focusing on. On one hand, this point
showcases the importance of using very elementary benchmarks in order to
study the different failure modes in isolation. On the other hand, trying
to sort out and quantify the impact of the different failure modes in more
complex environments is our main objective for future work.

6.8 Conclusion

In this chapter, we were able to demonstrate that Policy Gradient (PG)
algorithms such as DDPG can enter a deadlock state in any deterministic
sparse-reward problem, and that this deadlock occasionally occurs even in
trivial environments such as 1D-toy.

In particular, we showed that this deadlock originates in the Deterministic
Policy Gradient equation used by DDPG to train its policy efficiently using
gradient descent, and presented a variant of DDPG which bypasses this
problem at the cost of computational complexity. Despite its complexity, we
demonstrated that this variant is able to outperform DDPG on simple tasks
such as 1D-toy, but also on environments that have a higher-dimension
action space such as a sparse-reward variant of HalfCheetah-v2.

However, in more complex environments, other well-studied failure modes
become prevalent and the deadlock we identified cannot explain the poor
behavior of DDPG. In the following chapter, we present an extension of the
PB algorithm that allows it to bypass both the problem presented in this
chapter and other failure modes of DDPG, and solve complex environments
reliably.

95

7
Going one step further: backtracking with skill

chaining

In an ideal world, Plan, Backplay (PB) alone (described in Chapter 5) would be
able to bypass the weaknesses of Reinforcement Learning (RL) algorithms with
respect to exploration. However, as demonstrated in Chapter 6, continuous-
control RL algorithms struggle in environments with sparse rewards even
when trained using PB. Solutions have been proposed, but do not scale well
with the dimensionality of the action space.

In this chapter, we propose an extension of the PB algorithm, which we
call Plan, Backplay, Chain Skills (PBCS).

In PBCS, skill chaining is integrated in the second phase of the algorithm:
robustification. In this phase, a policy is trained to reliably reach the reward
by moving the starting point of the environment backwards along a trajectory.
In this context, skill chaining is used as a fail-safe, a last-resort to be used
when the training performance decreases below a set threshold. More precisely,
we use the fact that even if Backplay eventually fails, it is still able to solve
some subset of the problem. Therefore, a partial policy is saved, and the
remainder of the problem is solved recursively until the full environment can
be solved reliably.

Therefore, the ultimate output of the PBCS algorithm is a sequence of
policies (a chain of skills) that can be executed sequentially to reach the
reward.

The addition of skill chaining can seem straightforward, but it adds a new
challenge: in PB, the RL algorithm is trained on a version of the environment
in which the reset point gradually changes, but the reward function is kept
identical to the one in the underlying environment. In contrast, in PBCS the
RL algorithm needs to be trained to reach arbitrary states in the environment

96

since any state of the Phase 1 trajectory can be used as the boundary between
skills. In order to guide the agent towards an arbitrary state, we use a reward
shaping strategy described in Section 7.2.3. This strategy solves two problems:

1. It allows the training of an agent to reach an arbitrary state of the
environment, instead of the intended environment goal.

2. It replaces a sparse reward with a dense one, which suppresses the
problem underlined in Chapter 6.

This gives rise to a form of paradox: we use skill chaining in order to
solve the instability of RL algorithms, but then we need to introduce reward
shaping which also solves the instability of RL by removing sparse rewards.
A legitimate question would then be: why do we need skill chaining at all,
since reward shaping solves the instability of RL?

This question has two answers: reward shaping can be misleading, and
sparse rewards are not the only source of instability in RL. Introducing
reward shaping is useful when the reward can be found by simply following
the generated reward gradient. This may be the case for simple tasks, however
in larger environments such as mazes, simple reward shaping strategies such
as rewarding straight-line progress towards the goal fall short and tend to
mislead the agent, in other words it provides deceptive gradients. Using
reward shaping in conjunction with skill chaining limits the complexity of
the sub-policies that need to be learned, and diminishes the flaws of reward
shaping. Second, many works have demonstrated that RL algorithms can
be unstable especially in environments with continuous states and actions.
Therefore, the use of skill chaining is warranted even though reward shaping
could in theory solve the problem of sparse rewards alone. This is summarized
in Fig. 1 on page 18.

7.1 Related work

Skill chaining. The process of skill chaining was explored in different
contexts by several research papers. Konidaris and Barto [2009] present
an algorithm that incrementally learns a set of skills using classifiers to
identify changepoints, while the method proposed by Konidaris et al. [2010]
builds a skill tree from demonstration trajectories, and automatically detects
changepoints using statistics on the value function.

In Bagaria and Konidaris [2019]; Slivinski et al. [2020], a policy over
options is used to select from several learned skills. This approach uses a
classifier to define the activation set of each policy, however, it does not rely
on exploration data in the same way as our proposed method.

97

In the domain of Motion Planning (MP), sequencing local controllers
has been used through pre-image backchaining [Kaelbling and Lozano-Pérez,
2017] and LQR-Trees [Tedrake, 2009] although these approaches do not fit
the model-free paradigm.

To our knowledge, our approach is the first to use Backplay to build a
skill chain. We believe that it is more reliable and minimizes the number of
changepoints because the position of changepoints is decided using data from
the RL algorithm which trains the policies involved in each skill.

Reward shaping. Many RL environments are designed so that the natural
reward is continuous or near-continuous, for instance the score in a game, the
speed of a virtual robot, the distance to a target. These environments are
constructed so that reward shaping is not needed. However, some environ-
ments such as Montezuma’s Revenge provide hard exploration challenges. In
this case, reward shaping is often used to encourage exploration. However,
adding rewards to the environment can not only bias the policy search (which
is the intended effect), but also bias the optimal policy. This can be avoided
by adding a value to the environment reward r(s, a, s′) which is in the form
of Ψ(s′) − Ψ(s) where Ψ is any function. Therefore, Ψ can be seen as a
heuristic function that guides the agent towards the goal. Ng et al. [1999]
prove that this is a necessary and sufficient condition for the optimal policy
to be unbiased.

7.2 Methods

In this section, we introduce the PBCS algorithm, which builds on PB but is
more robust to the instabilities of the underlying RL algorithm, and to the
decay of the reward signal with longer training sessions.

We define Bε(x) as the ball of radius ε centered around x in Euclidean
distance, i.e.: Bε(x) = {y | ‖x− y‖ ≤ ε}.

7.2.1 Skill chaining algorithm

Algorithm 6 presents the skill chaining process. It uses a Backplay function
which is inspired by the work done in Chapter 5 and detailed in Section 7.2.2.
This function takes as input a trajectory τ0 . . . τT , and returns a policy π and
an index K < T such that running policy π repeatedly on a state from Bε(τK)
always leads to a state in Bε(τT).

The main loop of the skill chaining algorithm builds a chain of skills that
roughly follows trajectory τ , but is able to improve upon it. Specifically, acti-

98

Algorithm 6: Skill chaining algorithm

Input : τ0 . . . τN the output of phase 1
Output : π0 . . . πn a chain of policies with activation sets A0 . . . An

1 T ← N
2 n← 0
3 while T > 0 do
4 πn, T ← Backplay(τ0 . . . τT)
5 An ← Bε(τT)
6 n← n+ 1

7 end
8 Reverse lists π0 . . . πn and A0 . . . An

vation sets An are centered around points of τ but policies πn are constructed
using a generic RL algorithm that optimizes the path between two activation
sets. The list of skills is then reversed, because it was constructed backwards.

7.2.2 Adapted backplay algorithm

In this section, we build on the backtracking algorithm presented in Section 5.3,
which is itself a variant of an algorithm proposed by [Resnick et al., 2018].

The Backplay function (Algorithm 7) takes as input a segment τ0 . . . τT of
the trajectory τ0 . . . τN obtained in phase 1, and returns a pair (K, π) where
K is an index on trajectory τ , and π is a policy trained to reliably attain
Bε(τT) from Bε(τK). The policy π is trained using DDPG to reach Bε(τT)
from starting point Bε(τK)1, where K is initialized to T − 1, and gradually
decremented in the main loop.

At each iteration, the algorithm evaluates the feasibility of a skill with
target Bε(τT), policy π and activation set Bε(τK). If the measured performance
is 100% without any training (Line 5), the current skill is saved and the starting
point is decremented. Otherwise, a training loop is executed until performance
stabilizes (Line 8). This is performed by running Algorithm 8 repeatedly
until no improvement over the maximum performance is observed α times in
a row. We ran our experiments with α = 10, and a more in-depth discussion
of hyperparameters is available in Section 7.5.

Then the performance of the skill is measured again (Line 9), and three
cases are handled:

1More details on why the starting point needs to be Bε(τK) instead of τK are available
in Section 7.2.4

99

• The skill is always successful (Line 10). The current skill is saved
and the index of the starting point is decremented.

• The skill is never successful (Line 13). The last successful skill
is returned, unless no successful skill was ever found, in which case
training continues on the same segment until a better policy is found.

• The skill is sometimes successful. The current skill is not saved, and
the index of the starting point is decremented. In our maze environment,
this happens when Bε(τK) overlaps a wall: in this case some states of
Bε(τK) cannot reach the target no matter the policy.

Algorithm 7: The Backplay algorithm

Input : (τ0 . . . τT) a state-space trajectory
α the stability criterion.

Output : πs a trained policy
Ks the index of the starting point of the policy

1 K ← T − 1
2 Initialize a DDPG architecture with policy π
3 while K > 0 do
4 Test performance of π between Bε(τK) and Bε(τT) over β episodes
5 if performance = 100% then
6 πs ← π, Ks ← K

7 else
8 Run Train (Algorithm 8) repeatedly until performance

stabilizes (no improvement over α sessions).
9 Test performance of π between Bε(τK) and Bε(τT) over β

episodes
10 if performance = 100% then
11 πs ← π, Ks ← K

12 end
13 if performance = 0% and Ks exists then
14 return (Ks, πs)

15 end

16 end
17 K ← K − 1

18 end
19 return (πs, Ks)

100

Without reward shaping With reward shaping
0

20

40

60

80

100

%
 su

cc
es

s b
ef

or
e

10
0k

 in
te

ra
ct

io
ns Vanilla DDPG

PB

Figure 7.1: Performance of DDPG and PB on 2× 2 mazes with and without
reward shaping

7.2.3 Reward shaping

With reward shaping, we bypass the reward function of the environment, and
train DDPG to reach any state τT . Ng et al. [1999] proved that the only way to
avoid biasing the optimal policy when adding a shaped reward is to use a po-
tential function. Therefore we define a potential function Φ(s) = 1

d(s,τT)
, where

d(s, τT) is the L2 distance between s and the current training goal τT . We then

define our shaped reward Rshaped(s, a, s′) =

{
10 if d(s, τT) ≤ ε

Φ(s′)− Φ(s) otherwise.
.

In theory any positive constant can be used for the reward in Bε(τT).
The potential function guarantees that only advances towards the goal are
rewarded, and coupled with the discounted reward this progress is encouraged
to happen as early as possible. Therefore once the threshold of Bε(τT) is
reached, no further reward can be gained without entering the target area.

Reward shaping is an integral part of PBCS, however in the general
case of RL it can create deceptive rewards. Indeed, even on a 2 × 2 maze,
adding this shaped reward decreases the performance by about half. However,
as shown in Fig. 7.1, adding reward shaping to the PB algorithm slightly
increases its performance. Backplay eliminates the drawbacks of reward
shaping because the agent starts close to the reward, therefore no further
exploration is required and the deceptively-shaped gradient is overpowered
by the reward signal of the target which has already been discovered.

Algorithm 8 shows how this reward function is used in place of the envi-
ronment reward. This training function runs β episodes of up to max steps

101

Algorithm 8: Training process with reward shaping

Input : τK the source state
τT the target state

Output : The average performance p
1 n← 0
2 for i = 1 . . . β do
3 s ∼ Bε(τK)
4 for j = 1 . . .max steps do
5 a← π(s) + random noise
6 s′ ← step(s, a)
7 if d(s′, τT) ≤ ε then
8 r ← 10
9 else

10 r ← 1
d(s′,τT)

− 1
d(s,τT)

11 end
12 DDPG.train(s, a, s′, r)
13 s← s′

14 if d(s′, τT) ≤ ε then
15 n← n+ 1
16 break

17 end

18 end

19 end
20 p← n

β

21 return p

102

steps each, and returns the fraction of episodes that were able to reach the
reward. β is a hyperparameter that we set to 50 for our test, and more details
on this choice are available in Section 7.5.

Note that contrary to the backtracking algorithm presented in Fig. 5.1(b)
on page 69, Line 3 of Algorithm 8 resets the environment to a state chosen
randomly in Bε(τK) and not simply τK . This small change is necessary to be
able to chain skills, as detailed in Section 7.2.4. A side effect of this change
is reaching a performance of 100% is not always possible, even with long
training sessions, because the starting point is selected in Bε(τK), and some
of these states may be inside obstacles for instance.

7.2.4 Need for Resetting to Unseen States

As a reminder, for the Backplay algorithm and our variant, a single trajectory
τ0 . . . τT is provided, and training is performed by changing the starting point
of the environment to various states.

In the original Backplay algorithm, the environment is always reset to a
visited state τK , where K is an index chosen randomly in a sliding window of
[0, T]. The sliding window is controlled by hyperparameters, but the main
idea is that in the early stages of training, states near T are more likely to be
selected, while in later stages states near 0 are more likely to be selected.

However, we found that this caused a major issue when combined with
continuous control and the skill chaining process. With skill chaining, the
algorithm creates a sequence of activation sets (An), and a sequence of policies
(πn) such that when the agent reaches a state in An, it switches to policy πn.
Each activation set An is a ball of radius ε centered around a state τK for
some K.

The policy needs to be trained not only on portions of the environment
that are increasingly long, it also needs to account for the uncertainty of its
starting point. When executing the skill chain, the controller switches to
policy πn as soon as the state reaches the activation set An, which is Bε(τK)
for some K. Even if An is relatively small, we found it caused systematic
issues on maze environments, as presented in Fig. 7.2.

In our variant of the Backplay algorithm, we found it was necessary to
train DDPG on starting points chosen randomly in Bε(τK), to ensure that
the policy is trained correctly to solve a portion of the environment with any
starting point in this volume.

This also means that we need to reset the environment to unseen states, and
can cause problems when these states are unreachable (in our maze examples
this is usually because they are inside walls, but in higher dimensions we
assume this could be more problematic).

103

B2

B1

Figure 7.2: Policy π1 was trained using starting points τ30 . . . τ10 without any
added noise. Therefore, τ30 is reachable from τ10 using π1 (trajectory B1),
but not necessarily from any point in A1. In maze environments, the optimal
policy is usually close to walls, and provides little margin for perturbations.
The trajectory B2 (that starts in green and ends in blue) results from the
execution of the skill chain. The controller switches from π0 to π1 as soon as
the agent reaches A1, and then hits the wall (trajectory B2). This problem
persists even when ε is reduced.

104

When possible, a solution would be to run the environment backwards
from τK with random actions to generate these samples (while ensuring that
they still lie within Bε(τK)). Another solution, especially in high-dimension
environments, would be to run the environment backwards for a fixed number
of steps, and use a classifier to define the bounds of An, instead of using the
L2 distance.

7.3 Results on 2D mazes

We perform experiments in the same continuous maze environments as in
Section 5.4 for the PB algorithm. For a maze of size N , the state space is the
position of a point mass in [0, N]2 and the action describes the speed of the
point mass, in [−0.1, 0.1]2. Therefore, the step function is simply s′ = s+ a,
unless the [s, s′] segment intersects a wall. The only reward is −1 when hitting
a wall and 1 when the target area is reached.

A maze of size N is generated using a maze generation algorithm with
wall thickness 0.1, the target position is (N − .5, N − .5) when N > 2, or
(.5, 1.5) when N = 2. The Markov Decision Process (MDP) used for training
is:

S = [0, N]× [0, N]

A = [−0.1, 0.1]× [−0.1, 0.1]

step(s, a) =

{
s if [s, s+ a] intersects a wall

s+ a otherwise.

R(s, a, s′) = 1‖s′−target‖<0.2 − 1[s,s+a] intersects a wall

We used a standard DDPG implementation [OpenAI, 2018] with default
parameters. Each training session is limited to 50 episodes and an ε-greedy
noise process is applied during rollouts, with ε = 0.1 (ε-greedy noise is
introduced in Section 6.2.2 on page 76).

7.4 Analysis of results

As expected, standard RL algorithms (DDPG and TD3) were unable to
solve all but the simplest mazes. These algorithms have no mechanism for
state-space exploration other than uniform noise added to their policies during
rollouts. Therefore, in the best-case scenario they perform a random walk
and, in the worst-case scenario, their actors may actively hinder exploration.

105

Figure 7.3: Results of various algorithms on maze environments. For each
test, the number of environment steps performed is displayed with a red
background when the policy was not able to reach the target, and a green
one when training was successful.
In ”Vanilla” experiments, the red paths represent the whole area explored
by the RL algorithm. In ”Backplay” experiments, the trajectory computed
in phase 1 is displayed in red, and the ”robustified” policy or policy chain is
displayed in green. Activation sets Ai are displayed as purple circles. Enlarged
images are presented in Fig. 7.4.

Vanilla PBCS
DDPG TD3 DDPG

1M 1M 321k

1M 1M 5M

1M 1M 6M

1M 1M 8M

1M 1M 22M

106

Figure 7.4: Enlarged view of the results of PBCS on mazes of different sizes.
The trajectory computed in phase 1 is displayed in red, and the ”robustified”
policy chain is displayed in green. Activation sets Ai are displayed as purple
circles.

107

As seen in Chapter 5, backtracking alone (in the form of the PB algorithm)
is not sufficient to solve mazes more complex than 2 × 2, a failure that
we attributed to inherent limitations of DDPG such as the one studied in
Chapter 6.

However with the addition of skill chaining, PBCS is able to overcome
these issues by limiting the length of training sessions of DDPG, and is able
to solve complex mazes up to 7× 7, by chaining several intermediate skills.

7.5 Influence of hyperparameters

PBCS uses three hyperparameters α, β and ε.
The parameter α represents the number of consecutive non-improvements

of the training performance required to assume training is finished. In our
experiments, this value was set to 10, and we summarize here what can be
expected if this parameter is set too high or too low.

• Setting α too high results in longer training sessions, in which the policy
keeps being trained despite being already successful. The time and
sample performance of PBCS is impacted, but the algorithm should
still be able to build a policy chain.

• Setting α too low may cause training to stop early. In benign cases, the
policy is simply sub-optimal, but in some cases this may lead to the
creation of many changepoints, and prevent PBCS from improving at
all upon the phase 1 trajectory. If the activation conditions overlap too
much, PBCS may output a skill chain that is unable to navigate the
environment.

The parameter β represents the number of samples used to evaluate the
performance of a skill. In our experiments, this value was set to 50.

• Setting β too high would increase the time and sample complexity of
PBCS, but would not impact the output.

• The main risk of setting β too low is that PBCS may incorrectly compute
that a skill has a performance of 100%. If this skill is then selected, the
output skill chain may be unable to navigate the environment.

The parameter ε corresponds to the radius of the targets used during skill
chaining.

108

7.6 Conclusion

RL is unstable
in long sessions

Skill chaining

The results presented in Section 7.3 show that the addition of skill chaining
to PB allows to train RL algorithms on short sections of the environment,
therefore mitigating their instability in long training sessions.

Skill chaining
Need to

train towards
arbitrary targets

The addition of skill chaining requires the algorithm to be able to train
to reach arbitrary states, instead of the natural goal of the environment.

Need to
train towards

arbitrary targets
Reward shaping

Section 7.2.3 presents a solution to this problem in the form of reward
shaping, which allows us to guide a RL algorithm towards any state.

Sparse re-
wards cause

failures of RL

Reward shaping

As an added benefit, using a continuous shaped reward eliminates potential
deadlocks in RL which we presented in Chapter 6.

Reward shaping
Deceptive
gradients

However, the introduction of continuous reward shaping comes at a cost:
the reward gradient may be deceptive and prevent the agent from finding
the ultimate goal

109

Deceptive
gradients

Backplay

Fortunately, as detailed in Section 7.2.3 this is mitigated by the use
of backplay, which eliminates any possible dead-ends by ensuring the
ultimate reward is immediately known and used to bootstrap the value
estimates of the RL algorithm.

110

Conclusion

In this work, we studied the use of Reinforcement Learning (RL) algorithms
for solving simulated robotics tasks. We encountered a major issue that is
exploring a large-dimension environment to find a goal state, a task that RL
algorithms are not designed to accomplish.

We demonstrated that Motion Planning (MP) algorithms were suited to
this task although they require the use of an unusual primitive for RL which
is the ability to reset to any previously-visited state. MP algorithms are
often designed to take advantage of invertible models of the robot behavior,
however some algorithms such as Rapidly-exploring Random Tree (RRT)
and Expansive Spaces Tree (EST) can be adapted to operate without any
knowledge of the robot or environment. We also proposed a novel algorithm
called Ex that outperforms RRT on environments where the sampling space
is hard to specify in a way that makes sampling planners efficient.

Next, we found that the data provided by MP algorithms was not well-
suited to robotics control because they are in the form of a tree of transitions
and not a controller, which makes generalization difficult especially in the
absence of an environment model or local planner. This called for the use of
a second phase where an RL algorithm uses the exploration data to overcome
the difficulty of exploration, while outputting a robust policy. However, even
so-called off-policy algorithms such as Deep Deterministic Policy Gradient
(DDPG) are unable to learn from this exploration data alone (this would
require offline learning, which is an ongoing research topic). With additional
rollouts, DDPG can take advantage of the exploration data preloaded in its
replay buffer, however this process does not scale well, and more generally we
argued that the connectivity information in the exploration data is crucial in
some environments such as mazes with thin walls, and therefore any algorithm

111

that relies solely on a disconnected set of transitions is bound to fail in these
environments.

Therefore, we used the connectivity data of the exploration tree in the form
of a single trajectory from the environment reset point to a goal state that is
used as a learning curriculum through the use of backtracking. We called this
technique Plan, Backplay (PB) and demonstrated that it outperforms DDPG
on small mazes. PB also uses the reset-anywhere primitive, mirroring the
exploration process. However, this technique does not scale to larger maze
environments, in part due to the inherent instability of DDPG and other
off-policy RL algorithms.

This led us to identify a fundamental problem of DDPG, which takes
the form of a deadlock that can occur when the critic of DDPG converges
to a value that is expected, but provides little to no information to the
actor update, which leads the actor to be stuck to a sub-optimal policy. We
demonstrated this issue on a trivial environment, and showed that it could
be generalized to any sparse-reward environment, although the side effects of
function approximation can mitigate this issue.

Finally, we presented a new algorithm called Plan, Backplay, Chain Skills
(PBCS) that solves this deadlock by introducing reward shaping and therefore
removing the sparse reward. Usually, this would doom the exploration capa-
bilities of the underlying RL algorithm by providing a deceptive gradient, but
when used in conjunction with backtracking, this is not an issue. PBCS also
mitigates the instability of DDPG by introducing skill chaining, a technique
that fits especially well with the backtracking process. We demonstrated that
with this technique, DDPG was able to reliably traverse large mazes, up to
15× 15 cells.

Limitations

Despite our promising results, several limitations restrict the scope of our
study and proposed approaches. Some of these limitations can be mitigated,
while others are inherent to the technique and may be more difficult to
overcome.

Too many skills in mazes. In our experiments with PBCS on 2D mazes,
the expected result was to let the underlying RL algorithm handle most of
the navigation, and use skill chaining only as a last resort when either the
reward horizon was too far to propagate any useful signal, or the RL algorithm
diverges due to inherent limitations. However, we observed that a new skill
was triggered very often, meaning that the RL algorithm was able to learn

112

the correct action to traverse the maze in a straight line or a slight turn, but
did not generalize well to complex paths. We see this as a limitation of the
underlying RL algorithm, and hope that the next generation of off-policy
learning algorithms will benefit our approach as well.

Reset-anywhere in non-holonomic systems. The activation set of a
learned skill cannot be a single state, because reaching a given state is nearly
impossible in a continuous environment. Therefore, in PBCS we define
activation sets as balls with a fixed radius. This alone should be worrisome:
in environments with non-holonomic constraints or thin obstacles, there may
be no short trajectory linking two states that are close in state space. A
potential solution to this problem is the use of a reverse-time simulator: the
set of states from which s can be reached in n steps can be sampled by
running the simulation backwards from s during n steps with random actions.
This sampling could be directly used to train a tentative skill, however when
performing rollouts the controller needs to decide when to switch skills. This
could for instance be performed by training a classifier on the samples that
were generated by backwards simulation, and use it to decide whether a state
is in the activation set of the skill.

Limitations on the environment. In our work, we focused on determin-
istic environments with a single start area and a single goal area. We made
the case that non-sparse rewards are often used improperly in environments
where a sparse reward would be more logical. However, there certainly are
cases in which a dense reward is pertinent such as maximizing speed, min-
imizing cost, combining several objectives. RL algorithms are well suited
to these tasks, and do not necessarily suffer from the exploration challenge
on which we focused. Some tasks are hybrid in the sense that it is hard to
find any reward, but once some reward is found it needs to be maximized.
This is an area of research that we do not cover in this work. The real
world is often modeled as deterministic, however stochastic environments are
useful to describe uncertainty in the environment. Our work only deals with
deterministic environments, restricting its scope.

Limitations on the observations. Our work mostly deals with simula-
tions and therefore assumes that the state is known, however many earlier
RL algorithms function in environments where only partial observations are
available, either because of uncertainty on the environment, or because the
observation is obtained through sensors. Using the reset-anywhere primitive
negates this capability of RL, which is a big limitation since RL is well-known

113

for its capabilities in image and sensor data processing.

Perspectives

We believe that the use of reward-driven RL has allowed for incredible results
when performing complex motions that are limited in time, such as throwing
a ball, or simple walk cycles. However, the time horizons required for more
intricate sequences of actions such as traversing an environment show a
fundamental limit with the concept of discounted rewards. The exponential
nature of the discounted reward after n steps γn allows for a constant reward
gradient along a trajectory, but this requires tuning γ, and this gradient gets
smaller with longer time-horizons.

Furthermore, RL algorithms that use an experience replay buffer sample
from this buffer either uniformly, or with strategies that did not prove benefi-
cial in our benchmarks. Combined with the fact that updates to the policy
are often non-local, this makes learning a long trajectory challenging.

We found that integrating exploration data in RL was challenging mostly
because common RL algorithms are not offline, in the sense that they need
to interact with the environment themselves, and cannot solely rely on prior
rollouts. Offline learning is an active topic [Fu, 2020] which may yield
promising results although some cases are likely to remain problematic (see
Chapter 4).

We believe that splitting the learning process into exploration and ex-
ploitation components is beneficial, however in more challenging environments,
performing a full exploration of the state-space will likely be intractable. In
this case, more communication may be required between the exploration and
RL components. This could take the form of alternating between the two
behaviors, or more intricate approaches as explored by [Brown et al., 2020;
Chen et al., 2020].

Recent advances have improved the stability and speed of RL algorithms,
but we believe that the next breakthrough in the domain of robotics control
using RL will require some kind of compromise, both on the RL and MP sides.
On the MP side, this could be through the use of RL agents for sub-tasks such
as local planning or torque control. On the RL side, this could be achieved
either through modeling, expert input, or allowing the RL agent to reset to
arbitrary states (which is the path we took within this thesis).

The field of MP is an obvious neighbor when using RL algorithms to
control virtual or real-world robots, therefore we believe that bridging the
gap between these domains will be the key to future major advances.

114

Bibliography

Joshua Achiam and Miguel Morales. Part 2: Kinds of RL algo-
rithms — Spinning Up documentation, November 2018. URL https:

//spinningup.openai.com/en/latest/spinningup/rl_intro2.html.
[Cited on page 31.]

Joshua Achiam, Ethan Knight, and Pieter Abbeel. Towards characterizing
divergence in Deep Q-Learning. arXiv:1903.08894 [cs], March 2019. URL
http://arxiv.org/abs/1903.08894. [Cited on pages 15, 66, and 75.]

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wo-
jciech Zaremba. Hindsight Experience Replay. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 5048–5058.
Curran Associates, Inc., 2017. [Cited on page 37.]

Akhil Bagaria and George Konidaris. Option discovery using deep skill chain-
ing. In International Conference on Learning Representations, September
2019. URL https://openreview.net/forum?id=B1gqipNYwH. [Cited on
page 97.]

Leemon C. Baird and A. Harry Klopf. Reinforcement learning with high-
dimensional, continuous actions. 1993. doi: 10.21236/ada280844. [Cited
on page 75.]

Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuron-
like adaptive elements that can solve difficult learning control problems.

115

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
http://arxiv.org/abs/1903.08894
https://openreview.net/forum?id=B1gqipNYwH

IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(5):834–
846, September 1983. ISSN 2168-2909. doi: 10.1109/TSMC.1983.6313077.
[Cited on page 34.]

Richard Bellman. A Markovian Decision Process. Indiana University Math-
ematics Journal, 6(4):679–684, 1957. ISSN 0022-2518. doi: 10.1512/
iumj.1957.6.56038. URL http://www.iumj.indiana.edu/IUMJ/fulltext.

php?artid=56038&year=1957&volume=6. [Cited on page 131.]

Homanga Bharadhwaj, Animesh Garg, and Florian Shkurti. LEAF: Latent
Exploration Along the Frontier. arXiv:2005.10934 [cs], June 2020. URL
http://arxiv.org/abs/2005.10934. [Cited on page 37.]

Nick Bostrom. What happens when our computers get smarter than we are?,
2015. URL https://www.ted.com/talks/nick_bostrom_what_happens_

when_our_computers_get_smarter_than_we_are. [Cited on page 14.]

Justin A. Boyan and Andrew W. Moore. Generalization in reinforcement
learning: Safely approximating the value function. In Advances in neural
information processing systems, pages 369–376, 1995. [Cited on page 75.]

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining
Deep Reinforcement Learning and Search for Imperfect-Information Games.
arXiv:2007.13544 [cs], July 2020. URL http://arxiv.org/abs/2007.

13544. [Cited on page 114.]

Fanfei Chen, John D. Martin, Yewei Huang, Jinkun Wang, and Brendan
Englot. Autonomous Exploration Under Uncertainty via Deep Rein-
forcement Learning on Graphs. arXiv:2007.12640 [cs], July 2020. URL
http://arxiv.org/abs/2007.12640. [Cited on page 114.]

Hao-Tien Lewis Chiang, Jasmine Hsu, Marek Fiser, Lydia Tapia, and Alek-
sandra Faust. RL-RRT: Kinodynamic motion planning via learning reacha-
bility estimators from RL policies. arXiv:1907.04799 [cs], July 2019. URL
http://arxiv.org/abs/1907.04799. [Cited on page 37.]

Geoffrey Cideron, Thomas Pierrot, Nicolas Perrin, Karim Beguir, and Olivier
Sigaud. QD-RL: efficient mixing of quality and diversity in reinforcement
learning. arXiv:2006.08505 [cs], June 2020. URL http://arxiv.org/abs/

2006.08505. [Cited on page 36.]

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. GEP-PG: Decoupling
exploration and exploitation in deep reinforcement learning algorithms.

116

http://www.iumj.indiana.edu/IUMJ/fulltext.php?artid=56038&year=1957&volume=6
http://www.iumj.indiana.edu/IUMJ/fulltext.php?artid=56038&year=1957&volume=6
http://arxiv.org/abs/2005.10934
https://www.ted.com/talks/nick_bostrom_what_happens_when_our_computers_get_smarter_than_we_are
https://www.ted.com/talks/nick_bostrom_what_happens_when_our_computers_get_smarter_than_we_are
http://arxiv.org/abs/2007.13544
http://arxiv.org/abs/2007.13544
http://arxiv.org/abs/2007.12640
http://arxiv.org/abs/1907.04799
http://arxiv.org/abs/2006.08505
http://arxiv.org/abs/2006.08505

arXiv:1802.05054 [cs.LG], February 2018. URL https://arxiv.org/abs/

1802.05054. [Cited on pages 36, 62, 75, and 131.]

L. E. Dubins. On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents.
American Journal of Mathematics, 79(3):497–516, 1957. ISSN 0002-9327.
doi: 10.2307/2372560. URL https://www.jstor.org/stable/2372560.
[Cited on page 22.]

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and
Jeff Clune. Go-Explore: A new approach for hard-exploration problems.
arXiv:1901.10995 [cs, stat], January 2019. URL http://arxiv.org/abs/

1901.10995. [Cited on pages 17, 67, and 131.]

Paul Erdős and Samuel James Taylor. Some intersection properties of random
walk paths. Acta Mathematica Academiae Scientiarum Hungarica, 11(3):
231–248, September 1960. ISSN 1588-2632. doi: 10.1007/BF02020942.
URL https://doi.org/10.1007/BF02020942. [Cited on page 52.]

Lawrence H. Erickson and Steven M. Lavalle. Survivability: Measuring and
ensuring path diversity. 2009 IEEE International Conference on Robotics
and Automation, 2009. doi: 10.1109/ROBOT.2009.5152773. [Cited on
page 36.]

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine.
Diversity is All You Need: Learning skills without a reward function.
arXiv:1802.06070 [cs], October 2018. URL http://arxiv.org/abs/1802.

06070. [Cited on page 36.]

Mahdi Fakoor, Amirreza Kosari, and Mohsen Jafarzadeh. Revision on fuzzy
artificial potential field for humanoid robot path planning in unknown
environment. International Journal of Advanced Mechatronic Systems,
6(4):174, 2015. ISSN 1756-8412, 1756-8420. doi: 10.1504/IJAMECHS.
2015.072707. URL http://www.inderscience.com/link.php?id=72707.
[Cited on page 24.]

Aleksandra Faust, Oscar Ramirez, Marek Fiser, Kenneth Oslund, Anthony
Francis, James Davidson, and Lydia Tapia. PRM-RL: long-range robotic
navigation tasks by combining reinforcement learning and sampling-based
planning. arXiv:1710.03937 [cs], May 2018. URL http://arxiv.org/abs/

1710.03937. [Cited on page 37.]

117

https://arxiv.org/abs/1802.05054
https://arxiv.org/abs/1802.05054
https://www.jstor.org/stable/2372560
http://arxiv.org/abs/1901.10995
http://arxiv.org/abs/1901.10995
https://doi.org/10.1007/BF02020942
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1802.06070
http://www.inderscience.com/link.php?id=72707
http://arxiv.org/abs/1710.03937
http://arxiv.org/abs/1710.03937

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and
Pieter Abbeel. Reverse curriculum generation for reinforcement learn-
ing. arXiv:1707.05300 [cs], July 2018. URL http://arxiv.org/abs/1707.

05300. [Cited on page 68.]

Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically
motivated goal exploration processes with automatic curriculum learning.
arXiv:1708.02190 [cs], August 2017. URL http://arxiv.org/abs/1708.

02190. [Cited on pages 36 and 131.]

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian
Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier
Pietquin, Charles Blundell, and Shane Legg. Noisy networks for exploration.
arXiv:1706.10295 [cs, stat], June 2017. URL http://arxiv.org/abs/1706.

10295. [Cited on page 75.]

Justin Fu. D4RL: Building Better Benchmarks for Offline Reinforcement
Learning, June 2020. URL http://bair.berkeley.edu/blog/2020/06/

25/D4RL/. [Cited on page 114.]

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforce-
ment learning without exploration. arXiv:1812.02900 [cs, stat], December
2018a. URL http://arxiv.org/abs/1812.02900. [Cited on page 75.]

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function
approximation error in actor-critic methods. International Conference on
Machine Learning, 2018b. [Cited on pages 15, 16, 80, and 132.]

Matthieu Geist and Olivier Pietquin. Parametric value function approxima-
tion: A unified view. In IEEE Symposium on Adaptive Dynamic Program-
ming and Reinforcement Learning 2011, pages 9–16, Paris, France, April
2011. doi: 10.1109/ADPRL.2011.5967355. URL https://hal-supelec.

archives-ouvertes.fr/hal-00618112. [Cited on page 85.]

Github. jostbr/pymaze, February 2018a. URL https://github.com/jostbr/

pymaze. [Cited on page 70.]

Github. openai/gym. OpenAI, January 2018b. URL https://github.com/

openai/gym. [Cited on page 93.]

Github. erlerobot/gym-gazebo. Erle Robotics, July 2020a. URL https:

//github.com/erlerobot/gym-gazebo. [Cited on page 134.]

118

http://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1708.02190
http://arxiv.org/abs/1708.02190
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1706.10295
http://bair.berkeley.edu/blog/2020/06/25/D4RL/
http://bair.berkeley.edu/blog/2020/06/25/D4RL/
http://arxiv.org/abs/1812.02900
https://hal-supelec.archives-ouvertes.fr/hal-00618112
https://hal-supelec.archives-ouvertes.fr/hal-00618112
https://github.com/jostbr/pymaze
https://github.com/jostbr/pymaze
https://github.com/openai/gym
https://github.com/openai/gym
https://github.com/erlerobot/gym-gazebo
https://github.com/erlerobot/gym-gazebo

Github. openai/baselines. OpenAI, September 2020b. URL https://github.

com/openai/baselines. [Cited on page 57.]

Github. openai/rosbridge. OpenAI, February 2020c. URL https://github.

com/openai/rosbridge. [Cited on page 134.]

Github. protocolbuffers/protobuf. Protocol Buffers, August 2020d. URL
https://github.com/protocolbuffers/protobuf. [Cited on page 134.]

Peter Goldsborough. A Promenade of PyTorch, February 2018.
URL http://www.goldsborough.me/ml/ai/python/2018/02/04/

20-17-20-a_promenade_of_pytorch/. [Cited on page 133.]

Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Singhal, Timothy
Lillicrap, Sergey Levine, Hugo Larochelle, and Yoshua Bengio. Recall traces:
Backtracking models for efficient reinforcement learning. arXiv:1804.00379
[cs, stat], January 2019. URL http://arxiv.org/abs/1804.00379. [Cited
on page 67.]

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: off-policy maximum entropy deep reinforcement learning with
a stochastic actor. arXiv:1801.01290 [cs, stat], January 2018. URL http:

//arxiv.org/abs/1801.01290. [Cited on pages 36, 92, and 132.]

Jakob J. Hollenstein, Erwan Renaudo, and Justus Piater. Improving ex-
ploration of deep reinforcement learning using planning for policy search.
Submitted to the International Conference on Learning Representations,
September 2019. URL https://openreview.net/forum?id=rJe7CkrFvS.
[Cited on page 62.]

Ionel-Alexandru Hosu and Traian Rebedea. Playing atari games with deep
reinforcement learning and human checkpoint replay. arXiv:1607.05077 [cs],
July 2016. URL http://arxiv.org/abs/1607.05077. [Cited on page 30.]

David Hsu, Jean-Claude Latombe, and Rajeev Motwani. Path planning in
expansive configuration spaces. In Proceedings of International Conference
on Robotics and Automation, volume 3, pages 2719–2726 vol.3, April 1997.
doi: 10.1109/ROBOT.1997.619371. [Cited on pages 45, 46, and 131.]

Serena Ivaldi, Jan Peters, Vincent Padois, and Francesco Nori. Tools for simu-
lating humanoid robot dynamics: a survey based on user feedback. In IEEE-
RAS International Conference on Humanoid Robots (Humanoids), Madrid,
Spain, 2014. URL https://hal.archives-ouvertes.fr/hal-01116148.
[Cited on page 134.]

119

https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/openai/rosbridge
https://github.com/openai/rosbridge
https://github.com/protocolbuffers/protobuf
http://www.goldsborough.me/ml/ai/python/2018/02/04/20-17-20-a_promenade_of_pytorch/
http://www.goldsborough.me/ml/ai/python/2018/02/04/20-17-20-a_promenade_of_pytorch/
http://arxiv.org/abs/1804.00379
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://openreview.net/forum?id=rJe7CkrFvS
http://arxiv.org/abs/1607.05077
https://hal.archives-ouvertes.fr/hal-01116148

Boris Ivanovic, James Harrison, Apoorva Sharma, Mo Chen, and Marco
Pavone. BaRC: backward reachability curriculum for robotic reinforcement
learning. 2019 International Conference on Robotics and Automation
(ICRA), 2019. doi: 10.1109/ICRA.2019.8794206. [Cited on page 68.]

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul,
Joel Z. Leibo, David Silver, and Koray Kavukcuoglu. Reinforcement learning
with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.
[Cited on page 90.]

Leslie Kaelbling and Tomás Lozano-Pérez. Pre-image backchaining in belief
space for mobile manipulation. In Robotics Research: The 15th International
Symposium, volume 100, pages 383–400. January 2017. ISBN 978-3-319-
29362-2. doi: 10.1007/978-3-319-29363-9 22. [Cited on page 98.]

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog,
Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, and Vincent
Vanhoucke. Qt-opt: Scalable deep reinforcement learning for vision-based
robotic manipulation. arXiv preprint arXiv:1806.10293, 2018. [Cited on
page 92.]

Lydia Kavraki, Petr Svestka, Jean-Claude Latombe, and M.H. Overmars.
Probabilistic roadmaps for path planning in high-dimensional configuration
spaces. Robotics and Automation, IEEE Transactions on, 12:566–580,
September 1996. doi: 10.1109/70.508439. [Cited on page 40.]

Joseph Klann. Klann linkage in 4 different positions throughout
the cycle., 2005. URL https://commons.wikimedia.org/wiki/File:

F1-positions.gif. [Cited on pages 11 and 20.]

Ross A. Knepper and Matthew T. Mason. Path diversity is only part of the
problem. 2009 IEEE International Conference on Robotics and Automation,
2009. doi: 10.1109/ROBOT.2009.5152696. [Cited on page 36.]

George Konidaris and Andrew Barto. Autonomous shaping: Knowledge
transfer in reinforcement learning. In Proceedings of the 23rd international
conference on Machine learning, pages 489–496, 2006. [Cited on page 90.]

George Konidaris and Andrew G. Barto. Skill discovery in continuous reinforce-
ment learning domains using skill chaining. In Y. Bengio, D. Schuurmans,
J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neu-
ral Information Processing Systems 22, pages 1015–1023. Curran Associates,
Inc., 2009. [Cited on page 97.]

120

https://commons.wikimedia.org/wiki/File:F1-positions.gif
https://commons.wikimedia.org/wiki/File:F1-positions.gif

George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew G. Barto.
Constructing skill trees for reinforcement learning agents from demonstra-
tion trajectories. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, editors, Advances in Neural Information Processing
Systems 23, pages 1162–1170. Curran Associates, Inc., 2010. [Cited on
page 97.]

Yaqing Lai, Wufan Wang, Yunjie Yang, Jihong Zhu, and Minchi Kuang.
Hindsight planner. In Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS ’20, pages 690–
698, Auckland, New Zealand, May 2020. International Foundation for
Autonomous Agents and Multiagent Systems. ISBN 978-1-4503-7518-4.
[Cited on page 37.]

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement
learning. In Marco Wiering and Martijn van Otterlo, editors, Reinforce-
ment Learning: State-of-the-Art, Adaptation, Learning, and Optimization,
pages 45–73. Springer, Berlin, Heidelberg, 2012. ISBN 978-3-642-27645-
3. doi: 10.1007/978-3-642-27645-3 2. URL https://doi.org/10.1007/

978-3-642-27645-3_2. [Cited on page 59.]

Jean-Claude Latombe. Robot motion planning. The Springer International
Series in Engineering and Computer Science. Springer US, 1991. ISBN
978-0-7923-9206-4. doi: 10.1007/978-1-4615-4022-9. URL https://www.

springer.com/gp/book/9780792392064. [Cited on page 19.]

Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path
planning. Technical report, Iowa State University, 1998. [Cited on pages
66 and 132.]

Steven M. Lavalle and James Kuffner. Rapidly-exploring random trees:
Progress and prospects. Algorithmic and computational robotics: New
directions, January 2000. [Cited on pages 42 and 132.]

Joel Lehman and Kenneth O. Stanley. Evolving a diversity of virtual crea-
tures through novelty search and local competition. In Proceedings of the
13th annual conference on Genetic and evolutionary computation, GECCO
’11, pages 211–218, Dublin, Ireland, July 2011. Association for Comput-
ing Machinery. ISBN 978-1-4503-0557-0. doi: 10.1145/2001576.2001606.
URL https://doi.org/10.1145/2001576.2001606. [Cited on pages 36
and 131.]

121

https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1007/978-3-642-27645-3_2
https://www.springer.com/gp/book/9780792392064
https://www.springer.com/gp/book/9780792392064
https://doi.org/10.1145/2001576.2001606

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and
Shane Legg. Scalable agent alignment via reward modeling: a research
direction. arXiv:1811.07871 [cs, stat], November 2018. URL http://arxiv.

org/abs/1811.07871. [Cited on page 15.]

Jure Leskovec, Anand Rajaraman, and Jeff Ullman. Finding Similar Items.
In Mining of Massive Datasets. Chapter 3, January 2020. ISBN 978-1-108-
47634-8. URL http://www.mmds.org/. [Cited on page 50.]

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Rein-
forcement Learning: Tutorial, Review, and Perspectives on Open Problems.
arXiv:2005.01643 [cs, stat], May 2020. URL http://arxiv.org/abs/2005.

01643. [Cited on page 59.]

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control
with deep reinforcement learning. arXiv:1509.02971 [cs, stat], September
2015. URL http://arxiv.org/abs/1509.02971. [Cited on pages 15, 16,
27, 66, and 130.]

Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning,
and Control. Cambridge University Press, USA, 1st edition, 2017. ISBN
978-1-107-15630-2. [Cited on page 19.]

Guillaume Matheron, Nicolas Perrin, and Olivier Sigaud. The problem
with DDPG: Understanding failures in deterministic environments with
sparse rewards. arXiv:1911.11679 [cs, stat], November 2019. URL http:

//arxiv.org/abs/1911.11679. [Cited on pages 16, 17, and 130.]

Guillaume Matheron, Nicolas Perrin, and Olivier Sigaud. PBCS: Efficient
exploration and exploitation using a synergy between reinforcement learning
and motion planning. arXiv:2004.11667 [cs, stat], April 2020. URL http:

//arxiv.org/abs/2004.11667. [Cited on pages 17, 131, and 132.]

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with deep
reinforcement learning. arXiv:1312.5602 [cs], December 2013. URL http:

//arxiv.org/abs/1312.5602. [Cited on pages 15, 29, 66, 75, and 131.]

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,

122

http://arxiv.org/abs/1811.07871
http://arxiv.org/abs/1811.07871
http://www.mmds.org/
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1911.11679
http://arxiv.org/abs/1911.11679
http://arxiv.org/abs/2004.11667
http://arxiv.org/abs/2004.11667
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602

Shane Legg, and Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, February 2015. ISSN
1476-4687. doi: 10.1038/nature14236. URL https://www.nature.com/

articles/nature14236. [Cited on page 27.]

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,
Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous Methods for Deep Reinforcement Learning. arXiv:1602.01783
[cs], June 2016. URL http://arxiv.org/abs/1602.01783. [Cited on
page 35.]

Philippe Morere, Gilad Francis, Tom Blau, and Fabio Ramos. Reinforcement
learning with probabilistically complete exploration. arXiv:2001.06940 [cs,
stat], January 2020. URL http://arxiv.org/abs/2001.06940. [Cited on
page 68.]

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping
elites. arXiv:1504.04909 [cs, q-bio], April 2015. URL http://arxiv.org/

abs/1504.04909. [Cited on page 36.]

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under
reward transformations: Theory and application to reward shaping. In
Proceedings of the Sixteenth International Conference on Machine Learning,
International Conference on Machine Learning ’99, pages 278–287, June
1999. ISBN 978-1-55860-612-8. [Cited on pages 98 and 101.]

OpenAI. Spinning up in Deep RL, November 2018. URL https://blog.

openai.com/spinning-up-in-deep-rl/. [Cited on pages 53, 70, and 105.]

Hugo Penedones, Damien Vincent, Hartmut Maennel, Sylvain Gelly, Timothy
Mann, and Andre Barreto. Temporal difference learning with neural
networks - study of the leakage propagation problem. arXiv:1807.03064
[cs, stat], July 2018. URL http://arxiv.org/abs/1807.03064. [Cited
on page 64.]

J.M. Phillips, N. Bedrossian, and L.E. Kavraki. Guided Expansive Spaces
Trees: a search strategy for motion- and cost-constrained state spaces.
In IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004, volume 4, pages 3968–3973 Vol.4, April 2004.
doi: 10.1109/ROBOT.2004.1308890. [Cited on page 46.]

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor,
Richard Y. Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin

123

https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/2001.06940
http://arxiv.org/abs/1504.04909
http://arxiv.org/abs/1504.04909
https://blog.openai.com/spinning-up-in-deep-rl/
https://blog.openai.com/spinning-up-in-deep-rl/
http://arxiv.org/abs/1807.03064

Andrychowicz. Parameter space noise for exploration. arXiv preprint
arXiv:1706.01905, 2017. [Cited on page 75.]

David Pratt. The curse of dimensionality: A visual approach,
March 2018. URL https://blog.midnightmechanism.com/post/

dimensionality-curse/. [Cited on page 52.]

Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. Quality diversity: a
new frontier for evolutionary computation. Frontiers in Robotics and AI, 3,
2016. ISSN 2296-9144. doi: 10.3389/frobt.2016.00040. URL https://www.

frontiersin.org/articles/10.3389/frobt.2016.00040/full. [Cited
on page 36.]

James A. Reeds and Larry A. Shepp. Optimal paths for a car that goes both
forwards and backwards. 1990. doi: 10.2140/pjm.1990.145.367. [Cited on
page 21.]

Cinjon Resnick, Roberta Raileanu, Sanyam Kapoor, Alexander Peysakhovich,
Kyunghyun Cho, and Joan Bruna. Backplay: ”Man muss immer umkehren”.
arXiv:1807.06919 [cs, stat], December 2018. URL http://arxiv.org/abs/

1807.06919. [Cited on pages 17, 66, 67, 68, 99, and 131.]

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas
Degrave, Tom Van de Wiele, Volodymyr Mnih, Nicolas Heess, and
Jost Tobias Springenberg. Learning by playing - solving sparse reward
tasks from scratch. arXiv:1802.10567 [cs, stat], February 2018. URL
http://arxiv.org/abs/1802.10567. [Cited on page 90.]

Tim Salimans and Richard Chen. Learning Montezuma’s Revenge from a
single demonstration. arXiv:1812.03381 [cs, stat], December 2018. URL
http://arxiv.org/abs/1812.03381. [Cited on pages 30 and 67.]

Samir. Using Reinforcement Learning to Perform Motion Planning for
a YuMi Robot, December 2016. URL https://robosamir.github.io/

DDPG-on-a-Real-Robot/. [Cited on page 134.]

Arthur L. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, 3(3):210–229, July
1959. ISSN 0018-8646. doi: 10.1147/rd.33.0210. URL https://doi.org/

10.1147/rd.33.0210. [Cited on page 19.]

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
Experience Replay. arXiv:1511.05952 [cs], November 2015. URL http:

//arxiv.org/abs/1511.05952. [Cited on page 66.]

124

https://blog.midnightmechanism.com/post/dimensionality-curse/
https://blog.midnightmechanism.com/post/dimensionality-curse/
https://www.frontiersin.org/articles/10.3389/frobt.2016.00040/full
https://www.frontiersin.org/articles/10.3389/frobt.2016.00040/full
http://arxiv.org/abs/1807.06919
http://arxiv.org/abs/1807.06919
http://arxiv.org/abs/1802.10567
http://arxiv.org/abs/1812.03381
https://robosamir.github.io/DDPG-on-a-Real-Robot/
https://robosamir.github.io/DDPG-on-a-Real-Robot/
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1147/rd.33.0210
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.05952

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. Trust Region Policy Optimization. arXiv:1502.05477 [cs], February
2015. URL http://arxiv.org/abs/1502.05477. [Cited on pages 15, 30,
34, and 132.]

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs],
July 2017. URL http://arxiv.org/abs/1707.06347. [Cited on pages 34,
67, and 132.]

Alexander Shkolnik, Matthew Walter, and Russ Tedrake. Reachability-
guided sampling for planning under differential constraints. In 2009 IEEE
International Conference on Robotics and Automation, pages 2859–2865,
May 2009. doi: 10.1109/ROBOT.2009.5152874. [Cited on page 39.]

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra,
and Martin Riedmiller. Deterministic Policy Gradient algorithms. In
International Conference on Machine Learning, pages 387–395, January
2014. URL http://proceedings.mlr.press/v32/silver14.html. [Cited
on page 27.]

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of Go with deep neural networks and tree search. Nature, 529
(7587):484–489, January 2016. ISSN 1476-4687. doi: 10.1038/nature16961.
URL https://www.nature.com/articles/nature16961. [Cited on pages
19 and 30.]

Riley Simmons-Edler, Ben Eisner, Eric Mitchell, Sebastian Seung, and Daniel
Lee. Q-learning for continuous actions with cross-entropy guided policies.
arXiv:1903.10605 [cs], July 2019. URL http://arxiv.org/abs/1903.

10605. [Cited on page 92.]

Matthew Slivinski, George Konidaris, and Lauren E. Marshall. Robust deep
skill chaining. M.Sc. Project Report, 2020. [Cited on page 97.]

Héctor J. Sussmann and Guoqing Tang. Shortest paths for the Reeds-Shepp
car: a worked out example of the use of geometric techniques in nonlinear
optimal control. Technical Report SYCON–91-10, January 1991. [Cited on
page 22.]

125

http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://proceedings.mlr.press/v32/silver14.html
https://www.nature.com/articles/nature16961
http://arxiv.org/abs/1903.10605
http://arxiv.org/abs/1903.10605

Richard S. Sutton and Andrew G. Barto. 4.4 Value iteration. In Reinforcement
Learning: An Introduction. MIT Press, November 2018a. ISBN 978-0-262-
03924-6. [Cited on page 26.]

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, November 2018b. ISBN 978-0-262-03924-6. [Cited
on pages 16, 32, and 75.]

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan
Duan, John Schulman, Filip De Turck, and Pieter Abbeel. #Explo-
ration: A study of count-based exploration for deep reinforcement learning.
arXiv:1611.04717 [cs], November 2016. URL http://arxiv.org/abs/

1611.04717. [Cited on pages 36, 52, and 130.]

Russ Tedrake. LQR-Trees: Feedback motion planning on sparse randomized
trees. In Robotics: Science and Systems, University of Washington, Seattle,
USA, June 2009. doi: 10.15607/RSS.2009.V.003. [Cited on page 98.]

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine
for model-based control. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5026–5033, October 2012. doi:
10.1109/IROS.2012.6386109. [Cited on page 134.]

John N. Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference
learning with function approximation. In Advances in neural information
processing systems, pages 1075–1081, 1997. [Cited on page 75.]

Rasmus K. Ursem. Diversity-guided evolutionary algorithms. In Juan
Julián Merelo Guervós, Panagiotis Adamidis, Hans-Georg Beyer, Hans-Paul
Schwefel, and José-Luis Fernández-Villacañas, editors, Parallel Problem
Solving from Nature - PPSN VII, pages 462–471, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg. ISBN 978-3-540-45712-1. [Cited on page 36.]

Hado Van Hasselt and Marco A. Wiering. Reinforcement learning in continu-
ous action spaces. In 2007 IEEE International Symposium on Approximate
Dynamic Programming and Reinforcement Learning, pages 272–279. IEEE,
2007. [Cited on pages 93 and 130.]

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas
Sonnerat, and Joseph Modayil. Deep reinforcement learning and the deadly
triad. arXiv:1812.02648 [cs], December 2018. URL http://arxiv.org/

abs/1812.02648. [Cited on pages 66 and 75.]

126

http://arxiv.org/abs/1611.04717
http://arxiv.org/abs/1611.04717
http://arxiv.org/abs/1812.02648
http://arxiv.org/abs/1812.02648

Vojtech Vonásek and Martin Saska. Increasing diversity of solutions in
sampling-based path planning. In International Conference on Robotics
and Artificial Intelligence 2018, 2018. doi: 10.1145/3297097.3297114. [Cited
on page 36.]

Caleb Voss, Mark Moll, and Lydia E. Kavraki. A heuristic approach to finding
diverse short paths. 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015. doi: 10.1109/ICRA.2015.7139774. [Cited on
page 36.]

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards.
PhD Thesis, King’s College, Oxford, 1989. [Cited on pages 29, 34, and 132.]

Ronald J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8(3):229–256,
May 1992. ISSN 1573-0565. doi: 10.1007/BF00992696. URL https:

//doi.org/10.1007/BF00992696. [Cited on page 32.]

Edwin B. Wilson. Probable inference, the law of succession, and statistical
inference. Journal of the American Statistical Association, 22(158):209–212,
June 1927. ISSN 0162-1459. doi: 10.1080/01621459.1927.10502953. [Cited
on page 72.]

Albert Wu, Sadra Sadraddini, and Russ Tedrake. R3T: Rapidly-exploring
Random Reachable Set Tree for Optimal Kinodynamic Planning of Non-
linear Hybrid Systems. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 4245–4251, May 2020. doi:
10.1109/ICRA40945.2020.9196802. [Cited on page 39.]

Jun Yamada. Motion planner augmented action spaces for reinforcement
learning, June 2020. URL https://www.junjungoal.tech/publication/

mopa/. [Cited on page 37.]

Matthieu Zimmer and Paul Weng. Exploiting the sign of the advantage
function to learn deterministic policies in continuous domains. arXiv
preprint arXiv:1906.04556, 2019. [Cited on page 93.]

127

https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://www.junjungoal.tech/publication/mopa/
https://www.junjungoal.tech/publication/mopa/

Acronyms

CACLA Continuous Actor-Critic Learning Automata. 93, Glossary: CA-
CLA

DDPG Deep Deterministic Policy Gradient. 12, 17, 19, 26–29, 32–36, 56–64,
67–84, 89–92, 94, 95, 101, 105, 106, 108, 111, 112, 130–132, Glossary:
DDPG

DDPG-argmax Deep Deterministic Policy Gradient - argmax. 12, 91–95,
Glossary: DDPG-argmax

DQN Deep Q-Network. 26, 27, 29, 32–35, 75, Glossary: DQN

EST Expansive Spaces Tree. 45, 46, 48, 50, 52, 53, 111, 131, Glossary: EST

GEP Goal Exploration Processes. 36, Glossary: GEP

LfD Learning from Demonstration. 67

MDP Markov Decision Process. 19, 23–25, 38, 48, 57, 64, 69, 76, 105, 131,
132, Glossary: MDP

ML Machine Learning. 19

MP Motion Planning. 15–17, 19, 22–24, 30, 31, 36–38, 45, 54–56, 59, 66, 67,
73, 98, 111, 114, 131, 132, 134

NSLC Novelty Search with Local Competition. 36, Glossary: NSLC

128

OU Ornstein-Uhlenbeck. 77

PB Plan, Backplay. 12, 17, 66–69, 71–74, 95, 96, 98, 101, 105, 108, 109, 112,
132, Glossary: PB

PBCS Plan, Backplay, Chain Skills. 17, 96, 98, 101, 106–108, 112, 113,
Glossary: PBCS

PG Policy Gradient. 17, 32, 95

PPO Proximal Policy Optimization. 32, 67, 68, Glossary: PPO

RL Reinforcement Learning. 11, 15–17, 19, 23–25, 27, 28, 30–33, 35–38, 44,
46, 52, 54–56, 59, 63–68, 71, 73–75, 96–98, 101, 109–114, 130–134

RRT Rapidly-exploring Random Tree. 11, 23, 31, 38–46, 48, 50, 53, 54, 66,
68, 111, 132, 134, Glossary: RRT

RRT-NH Rapidly-exploring Random Tree Non-Holonomic. 11, 40, 42–46,
48, 52–59, Glossary: RRT-NH

SAC Soft Actor-Critic. 12, 32, 34–36, 91–93, Glossary: SAC

TD3 Twin Delayed Deep Deterministic Policy Gradient. 32–35, 83, 89, 90,
106, Glossary: TD3

TRPO Trust Region Policy Optimization. 32, 34, 68, Glossary: TRPO

129

Glossary

#Exploration is a method of penalizing already-seen areas in a more tradi-
tional Reinforcement Learning (RL) algorithm. In order to efficiently
detect whether a state is in a densely-explored area, the state space
is divided in bins which all have a counter. States are then penalized
using reward shaping [Tang et al., 2016]. 36, 46, 52

CACLA is an class of actor-critic algorithms2 that only use the sign of the
Time-Difference error to determine the update to a stochastic actor,
instead of using the exact error. The actor is only updated when the
TD-error is positive [Van Hasselt and Wiering, 2007]. 93

DDPG is an actor-critic reinforcement learning that trains a deterministic
actor, using the chain derivation rule to train the actor towards the
best action under the current policy and critic values [Lillicrap et al.,
2015]. 17, 19, 35, 56, 67, 74, 111, 130

DDPG-argmax is a variant of Deep Deterministic Policy Gradient (DDPG)
in which the actor update is based on a sampled argmax operation
instead of gradient descent. This alleviates some convergence problems
at the cost of additional sampling [Matheron et al., 2019]. 91

DQN is an extension of Q-Learning to continuous state spaces, while re-
taining the discrete action space. Q is stored as a parametric neural
network, and updated by performing a regression using the Q-Learning

2see our Taxonomy of Reinforcement Learning algorithms on page 32 for more informa-
tion on actor-critic algorithms

130

rule [Mnih et al., 2013]. The main difference with DDPG, which uses a
continuous actions space is the use of an explicit maximum operation,
since Q can be evaluated for each possible action. 26, 34, 75

EST is a Motion Planning (MP) algorithm that explores a state space by
prioritizing areas of the tree that have a low density, and expanding in
a set disc around the chosen node [Hsu et al., 1997]. 45, 111, 131

Ex is a motion planning algorithm inspired by Expansive Spaces Tree (EST),
and can build an exploration tree in a Markov Decision Process (MDP).
It can be seen as a random walk that resets to a visited state when it
encounters itself, and uses counters and spatial hashing so that each
exploration step can be performed in O(1) time [Matheron et al., 2020].
17, 39, 44, 46–63, 68, 69, 111, 131

GEP is an algorithm that finds a set of diverse policies by performing a goal
exploration process similar to Ex in an outcome space that is based
on the policy [Forestier et al., 2017]. These diverse policies can then
be used to bootstrap DDPG in a variant called GEP-PG [Colas et al.,
2018].. 36

Go-Explore is a RL algorithm that trains a policy on a continuous MDP
by using a two-steps approach. In a first step, a single valid path to the
reward is found using an exploration algorithm. In a second step, this
path is converted to a robust policy using backtracking. This algorithm
was mostly tested on Atari benchmarks [Ecoffet et al., 2019]. 17, 67, 68

MDP A MDP is a discrete-time stochastic control problem. It can be defined
as a tuple (S,A, Pa, Ra) in which S is the state space, A the action
space, Pa(s, s

′) is the probability that action a in state s will lead to
state s′ at the next time step. Ra(s, s

′) is the immediate reward received
for the same transition [Bellman, 1957]. 19, 38, 57, 70, 76, 105, 131

NSLC is an algorithm that finds a set of policies that are both diverse and
perform well with respect to an objective. When two tentative policies
are too similar, a secondary objective function is used to determine
which to keep and which to forget. [Lehman and Stanley, 2011]. 36

PB is an two-part algorithm in which first, a valid trajectory is found using
MP, then a second part inspired by Backplay [Resnick et al., 2018]
helps the training of a RL algorithm by moving the starting point of

131

the environment backwards along this valid trajectory, until it reaches
the original start of the environments. 17, 66, 74, 96, 112, 132

PBCS is an extension of Plan, Backplay (PB) which detects when the RL
process is stuck or has diverged, and is able to restore it to a sane state,
and exploit the progress achieved to reduce the problem to a simpler
one and solve it recursively [Matheron et al., 2020]. 17, 96, 112

PPO is a class of RL algorithms that perform a policy gradient descent while
limiting the change in policy at each training step by applying a penalty
depending on the difference between the parameters of consecutive
policies [Schulman et al., 2017]. 34, 67

Q-Learning is a Reinforcement Learning algorithm suited to finite MDPs,
and is always able to find an optimal policy on such environments
[Watkins, 1989]. 19, 26–29, 32–34, 130

RRT is a MP algorithm which biases the expansion of a search tree towards
large unexplored areas by uniformly sampling targets in a predefined
space, and expanding from the tree node that is nearest the target
[Lavalle, 1998]. 11, 23, 31, 38, 66, 111, 132, 134

RRT-NH is a variant of Rapidly-exploring Random Tree (RRT) which is
more suited to RL and non-holonomic problems because the expansion
is done with random actions instead of trying to determine the best
action to advance towards the target state [Lavalle and Kuffner, 2000].
11, 40, 56

SAC is a RL algorithm that trains a stochastic actor while ensuring it does
not converge to a deterministic policy by adding an entropy maximiza-
tion constraint [Haarnoja et al., 2018]. 35, 91

TD3 is an expansion of DDPG which adds several features that speed up
convergence and increase stability, namely the use of two critic networks,
less frequent actor updates and adding noise to the actions used for
training the critic network [Fujimoto et al., 2018b]. 35, 83

TRPO Is a RL algorithm that improves on simple Policy Gradient by
estimating bounds for the size of each gradient descent step, and is
able to guarantee monotonic improvements under certain conditions
[Schulman et al., 2015]. 34, 68

132

A
Appendix: tooling and other contributions

A.1 Reinforcement Learning toolchain

In our work, we used Tensorflow with Python 3.7 and Python 3.8. It was run
on Ubuntu and we used this workflow to run experiments on a set number of
different parameters or seeds:

1. Create a single script that takes all of the relevant parameters as
arguments

2. Create a BASH script auto.sh that generates a list of all commands to
run. Each command has different parameters, for instance seed=3, algo=ddpg,
and an experiment name such as ddpg_03. Each command is stored in a
separate bash script in the commands directory, for instance commands/exp_ddpg_03.sh.

3. Run script auto.sh that generates the list of experiments to perform.

4. Use a Makefile to run parallel experiments using the -j argument of
make. Each command can either pipe its log to a separate file that is
used as a target for Make, or produce a csv or pkl results file which can
be used as a target for Make.

5. Once each experiment is complete, use a python script to read all the
results and either produce the figures or aggregate them in a single file
which can then be exploited to produce figures.

Another popular Python library for Reinforcement Learning (RL) that
we investigated is PyTorch [Goldsborough, 2018].

133

A.2 Gazebo simulator

All of the experiments which are presented in this document use either a
custom simulator (for extremely simple environments such as 1D-toy or
mazes), or the MuJoCo simulator [Todorov et al., 2012]. Other options have
been surveyed by Ivaldi et al. [2014], but the main criticism of MuJoCo is its
”soft” simulation of contact forces, that benefits RL approaches by smoothing
forces and observations.

An early project of my thesis was using the ROS Gazebo simulator with RL
algorithms. Gazebo is well known in the Motion Planning (MP) community
for simulating the behavior of actual robots, therefore testing RL algorithms
on Gazebo is a first step to bridge the two domains.

Most RL algorithms are implemented in Python, therefore we implemented
a Gazebo module that accepts commands in the form of Protobuf Github
[2020d] messages on a socket and opens an API to Gazebo that can be used
from Python. This interface allowed for about 400 simulation steps per second
on a typical computer.

Other projects also attempt to run RL algorithms on simulated environ-
ments using Gazebo [Github, 2020a,c; Samir, 2016].

A.3 RRT pitfalls

During our research, finding a good Rapidly-exploring Random Tree (RRT)
implementation proved harder than expected. The main time-complexity
of RRT comes from the nearest_neighbor function, and is usually solved
using a data structure called a k-d Tree (approximate methods also exist).
However, implementations usually do not re-balance the search tree regularly.
If points were inserted in a random order, the average complexity would
still be logarithmic (for a single lookup) in the size of the tree, however the
structure of the insertion order in RRT causes catastrophic performance. We
implemented our own version of RRT which re-balances the k-d tree when it
detects an imbalance.

A.4 Analysis of 1D-Toy

In this section, we study a few properties of environment 1D-toy. Modeling
the behavior of stochastic rollouts (in this case a deterministic agent with
ε-greedy noise) on discrete-time environments is usually intractable, however
the 1D-toy environment is simple enough to analytically study the experience
generated by rollouts when the learned policy is saturated.

134

This analysis is not strictly required to our work in Chapter 6, but is an
interesting brain teaser.

A.4.1 Probability of success for an unbiased random
walk with sink

In this section, we model the behavior of an agent that performs actions
sampled uniformly in [−0.1, 0.1]. The following definition formalizes this
process.

Definition 3 (Unbiased random walk with sink). An unbiased random walk
with sink is a sequence of random variables Xi where Pr(X0 = 0) = 1,
and Xi+1 = Xi + Ui, where Ui has the Probability Density Function (PDF)

u(x) =

{
5 if − 1

10
< x < 1

10

0 otherwise
.

However the states]−∞, 0] act as a sink: Xi+1 is only defined if Xi > 0
(otherwise the reward is found and the episode stops).

Theorem 4. For each i > 0, there exists a set of polynoms P
(k)
i such that

Xi has PDF xi(z) =
{
P

(k)
i if k−1

10
≤ z < k

10
.

Proof. Initialization

X1 = X0 + U0 therefore x1(z) =
{

5 if − 1
10
< z < 1

10
and P

(0)
1 = P

(1)
1 = 5.

Induction
For all i and k, let Q

(k)
i =

∫
P

(k)
i .

Let u(z − t) =

{
5 if z − 1

10
< t < z + 1

10

0 otherwise
.

Consider the hypothesis holds true for i. We use the relation Xi+1 =
Xi + Ui, however we only consider the cases in which Xi > 0. In order to
achieve this, we add a normalization coefficient α and only integrate positive
arguments for xi.

xi+1(z) = α

∫ +∞

0

xi(t)u(z − t)dt

= 5α

∫ z+ 1
10

max(0,z− 1
10

)

xi(t)dt

Let z > − 1
10

and k = b10z + 1c. We then have k−1
10
≤ z < k

10
and k ≥ 0.

The integration interval can be split in three segments
[
max(0, z − 1

10
),max(0, k−1

10
)
]
,[

max(0, k−1
10

), k
10

]
and

[
k
10
, z + 1

10

]
.

135

xi+1(z) = 5α

[∫ max(0, k−1
10

)

max(0,z− 1
10

)

xi(z)dt+

∫ k
10

max(0, k−1
10

)

xi(z)dt+

∫ z+ 1
10

k
10

xi(z)dt

]

= 5α

[∫ max(0, k−1
10

)

max(0,z− 1
10

)

P
(k−1)
i (z)dt+

∫ k
10

max(0, k−1
10

)

P
(k)
i (z)dt+

∫ z+ 1
10

k
10

P
(k+1)
i (z)dt

]

= 5α

[
Q

(k−1)
i

(
max

(
0,
k − 1

10

))
−Q(k−1)

i

(
max

(
0, z − 1

10

))

+Q
(k)
i

(
k

10

)
−Q(k)

i

(
max

(
0,
k − 1

10

))

+Q
(k+1)
i

(
z +

1

10

)
−Q(k+1)

i

(
k

10

)]
.

max
(
0, X − 1

10

)
is piecewise-polynomial therefore xi+1(z) is piecewise-

polynomial.
Note that z − 1

10
is either positive or negative on the whole interval

k−1
10
≤ z < k

10
. Therefore, max

(
0, z − 1

10

)
is piecewise-polynomial with

the same pieces as the rest of the polynoms, and xi+1 can we written as

xi+1(z) =
{
P

(k)
i+1 if k−1

10
≤ z < k

10
.

Computation of the normalization coefficient α

1 =

∫ +∞

−∞
xi+1(z)dz =

∫ +∞

−∞
α

∫ +∞

0

xi(t)u(z − t)dtdz = α

∫ +∞

0

xi(t)dt

Therefore,

α =
1∫ +∞

0
xi(t)dt

=
1

1−
∫ (0)

−∞ xi(t)dt
=

1

1−
∫ 0

− 1
10
P

(0)
i

=
1

1−Q(0)
i (0) +Q

(0)
i (− 1

10
)

This shows that the coefficients of P
(k)
i can be computed in efficient time

using dynamic programming.
Computation of Pr(Xi ≤ 0)

Pr(Xi ≤ 0) = Q
(0)
i (0)−Q(0)

i (− 1

10
)

136

0.00 0.25 0.50 0.75 1.00

0

1

2

3

4

5
Step 1

Step 11

Step 21

Step 31

Step 41

Step 51

(a) start state=0

0.00 0.25 0.50 0.75 1.00

0

1

2

3

4

5
Step 1

Step 11

Step 21

Step 31

Step 41

Step 51

(b) start state=0.1

Figure A.1: PDF of state after n steps of the unbiased random walk with sink

1 11 21 31 41
0.0

0.2

0.4

0.6

0.8

1.0

o
b

a
b
ili

ty
 o

f
su

cc
e
ss

 i
n
 l
e
ss

 t
h
a
n
 n

 s
te

p

(a) start state=0

1 11 21 31 41
0.0

0.2

0.4

0.6

0.8

1.0

o
b

a
b
ili

ty
 o

f
su

cc
e
ss

 i
n
 l
e
ss

 t
h
a
n
 n

 s
te

p

(b) start state=0.1

Figure A.2: Cumulative success rate after n steps of the unbiased random
walk with sink

A.4.2 Probability of success for unbiased p-greedy ran-
dom walk with sink

In this section, we change the problem to fit closer to the definition of 1D-
toy. We state that a random action is performed only with probability p, in
other cases the state is unchanged. Since the initial state has a Dirac delta
distribution, we can’t compute it as a piecewise-polynomial. To alleviate this
constraint, we assume that the agent is always greedy on the first step.

The definition of the new problem follows:

137

Definition 4 (Unbiased p-greedy random walk with sink). We model the
behavior of the agent as a sequence of random variables Yi where Y1 has PDF

y1(z) =

{
5 if − 0.1 ≤ z < 0.1

0 otherwise
,

and for i ≥ 2, Yi+1 =

{
Yi + Ui with probability p

Yi with probability 1− p , where Ui has PDF

u(z) =

{
5 if − 1

10
< z < 1

10

0 otherwise
.

Theorem 5. For each i > 0, there exists a set of polynoms R
(k)
i such that Yi

has PDF yi(z) =
{
R

(k)
i if k−1

10
≤ z < k

10
.

Proof. This can be noted by simply applying a transformation to P computed
earlier.

For k > 0, R
(k)
i = γ

(
(1− p)P (k)

i + pP
(k)
i+1

)
and R

(0)
i = γpP

(0)
i+1. The nor-

malization coefficient γ can be computed as 1
γ

= 1−(1−p)
(
Q

(0)
i −Q(0)

i

(
− 1

10

))
.

A.4.3 Sanity check

We ran simulations of the unbiased random walk with sink and unbiased
p-greedy random walk with sink models, and compared the experimental
results to the curves predicted by our analysis (Figures A.4 and A.3).

We then compared these results to the earliest reward found in the actual
1D-toy experiments. Since the maximum episode length is 50 steps, and the
actor is updated at the end of the episode, we expect to see this model match
the unbiased p-greedy random walk (we showed the initial actor’s output is
very small). This claim is tested in Figure A.5.

138

1 11 21 31 41
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) start state=0, p=1

1 11 21 31 41
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) start state=0.1, p=1

1 11 21 31 41
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) start state=0, p=0.1

1 11 21 31 41
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) start state=0.1, p=0.1

Figure A.3: Cumulative success rate after n steps of the p-greedy unbiased
random walk with sink. Blue: analytical predictions. Red: simulation results
(N=10M)

139

0

200

400

600

800

0.00 0.25 0.50 0.75 1.00 1.25
0.0

0.5

1.0

1.5

2.0

(a) start state=0, p=1

0

200

400

600

800

100

0.00 0.25 0.50 0.75 1.00 1.25
0.0

0.5

1.0

1.5

2.0

(b) start state=0.1, p=1

0

500

100

150

0.00 0.25 0.50 0.75 1.00
0

2

4

6

(c) start state=0, p=0.1

0

250

500

750

100

125

150

0.00 0.25 0.50 0.75 1.00
0

1

2

3

4

5

(d) start state=0.1, p=0.1

Figure A.4: PDF of state after 21 steps of the unbiased random walk with
sink. Blue: analytical predictions. Red: simulation results (N=10M)

1 11 21 31 41
Steps

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

ili
ty

 o
f

su
cc

e
ss

 i
n
 l
e
ss

 t
h
a
n
 n

 s
te

p
s

Figure A.5: Cumulative success rate after n steps of the 0.1-greedy unbiased
random walk with sink. Blue: analytical predictions. Red: 1D-toy results
(N=19k). start state=0

140

	List of Figures
	Introduction
	Motivation
	Methodology
	Summary of contributions

	Background
	Background on Motion Planning
	Configurations, constraints and holonomy
	Implications of non-holonomic constraints
	Common assumptions in Motion Planning

	Background on Reinforcement Learning
	Markov Decision Processes
	Matching Reinforcement Learning and Motion Planning concepts
	Policies and agents
	Q-Learning
	Deep Deterministic Policy Gradient

	Reset-anywhere

	Related work
	Taxonomy of Reinforcement Learning algorithms
	Exploration mechanisms for behavioral learning
	Attempts to use Motion Planning techniques with Reinforcement Learning

	Using motion planning in a reinforcement learning environment
	Adapting Rapidly-exploring Random Tree to RL Algorithms
	Rapidly-exploring Random Tree
	RRT in RL environments
	Limitations of RRT due to sampling

	Expansive Spaces Tree
	Ex
	Pitfalls of density as a measure for novelty
	The Ex algorithm
	Related work

	Experiments using a feature space
	The curse of dimensionality
	Feature spaces
	Benchmark on Ant-Maze

	Conclusion

	Exploiting exploration data in Reinforcement Learning through the experience replay buffer
	Experimental setup
	Behavior of DDPG, RRT-NH and Ex on mazes
	Motivation
	Methods
	Results
	Analysis
	Thin walls and the limits of ``sets of transitions''
	Conclusion

	Exploiting exploration data as a training curriculum: backtracking
	Introduction
	Related work
	Backtracking algorithm
	Experimental Setup
	Choice of discount factor gamma
	Results on 2D mazes and analysis

	The problem of deterministic policy gradients in deterministic environments with sparse rewards
	Related work
	A new failure mode
	The 1D-Toy environment
	Residual failure to converge using different noise processes.

	Correlation between finding the reward early and finding the optimal policy.
	Spontaneous actor drift
	Explaining the deadlock situation for DDPG on 1D-Toy
	Formal proof of the existence of a deadlock in 1D-Toy

	Generalization to all deterministic Policy Gradient algorithms in deterministic environments with sparse rewards
	Proof of convergence of the critic to the state-action value function of the policy
	Proof that the state-action value function of a policy is piecewise-constant
	Consequences of the convergence cycle

	Impact of function approximation
	Potential solutions
	Avoiding sparse rewards
	Replacing the policy-based critic update
	Replacing the deterministic policy gradient update

	Experiments on larger benchmarks
	Conclusion

	Going one step further: backtracking with skill chaining
	Related work
	Methods
	Skill chaining algorithm
	Adapted backplay algorithm
	Reward shaping
	Need for Resetting to Unseen States

	Results on 2D mazes
	Analysis of results
	Influence of hyperparameters
	Conclusion

	Conclusion
	Bibliography
	Acronyms
	Glossary
	Appendix: tooling and other contributions
	Reinforcement Learning toolchain
	Gazebo simulator
	RRT pitfalls
	Analysis of 1D-Toy
	Probability of success for an unbiased random walk with sink
	Probability of success for unbiased p-greedy random walk with sink
	Sanity check

